This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results stress explicit analytic methods. Coverage includes the relations between algebraic integral geometry and partial differential equations. The first half of the book includes the ray, the spherical mean transforms in the plane or in 3-space, and inversion from incomplete data.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This book is an excellent overview of the field of integral geometry with emphasis on the functional analytic and differential geometric aspects. The author proves theorems for some of the most important Radon transforms, including transforms on hyperplanes, k-planes, lines, and spheres, and he investigates incomplete (limited) data problems including microlocal analytic issues...This book contains many treasures in integral geometry...and it belongs on the shelf of any analyst or geometer who would like to see how deep functional analysis and differential geometry are used to solve important problems in integral geometry." -Mathematical Reviews