8,49 €
8,49 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
8,49 €
8,49 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
8,49 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
8,49 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Cold-Start Problem é um problema recorrente em Sistemas de Recomendação nas seguintes situações: quando um novo item é adicionado ao sistema e não possui nenhuma avaliação prévia; ou quando um usuário sem histórico de avaliação entra no sistema. Avaliando as diferentes situações em que o Cold-Start Problem se apresenta, é possível considerar o uso do histórico de navegação como alternativa para geração de recomendações. Levando em conta o formato sequencial dos dados, estudos sugerem o uso de Redes Neurais Recorrentes (RNN) por permitir maior entendimento da sequência de dados e seu contexto.…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 4.83MB
  • FamilySharing(5)
Produktbeschreibung
Cold-Start Problem é um problema recorrente em Sistemas de Recomendação nas seguintes situações: quando um novo item é adicionado ao sistema e não possui nenhuma avaliação prévia; ou quando um usuário sem histórico de avaliação entra no sistema. Avaliando as diferentes situações em que o Cold-Start Problem se apresenta, é possível considerar o uso do histórico de navegação como alternativa para geração de recomendações. Levando em conta o formato sequencial dos dados, estudos sugerem o uso de Redes Neurais Recorrentes (RNN) por permitir maior entendimento da sequência de dados e seu contexto. Durante a revisão sistemática realizada neste trabalho, as arquiteturas de LSTM, GRU e híbridas aparecem com frequência entre as pesquisas relacionadas ao tema. Entretanto, os autores dos trabalhos revisados não comparam as arquiteturas entre si, o que é crucial para o entendimento das vantagens e desvantagens do uso de dados do histórico de navegação com RNN. Este estudo propõe a comparação das arquiteturas de LSTM, GRU e híbridas de RNN através da criação de protótipos utilizando a mesma base de entrada, avaliando suas performances através dos valores de Acurácia, Revocação, Precisão e F1-Score.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.