Werner Vach
Regression Models as a Tool in Medical Research (eBook, PDF)
46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
46,95 €
Als Download kaufen
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Werner Vach
Regression Models as a Tool in Medical Research (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
While regression models have become standard tools in medical research, understanding how to properly apply the models and interpret the results is often challenging for beginners.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Mark ChangAdaptive Design Theory and Implementation Using SAS and R (eBook, PDF)41,95 €
- Atanu BhattacharjeeBayesian Approaches in Oncology Using R and OpenBUGS (eBook, PDF)52,95 €
- Handbook of Statistical Methods for Randomized Controlled Trials (eBook, PDF)65,95 €
- Daryl S. PaulsonApplied Statistical Designs for the Researcher (eBook, PDF)65,95 €
- Craig MallinckrodtEstimands, Estimators and Sensitivity Analysis in Clinical Trials (eBook, PDF)44,95 €
- Statistical Methods in Epilepsy (eBook, PDF)52,95 €
- Mai ZhouEmpirical Likelihood Method in Survival Analysis (eBook, PDF)65,95 €
-
-
-
While regression models have become standard tools in medical research, understanding how to properly apply the models and interpret the results is often challenging for beginners.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 496
- Erscheinungstermin: 27. November 2012
- Englisch
- ISBN-13: 9781466517493
- Artikelnr.: 57102106
- Verlag: Taylor & Francis
- Seitenzahl: 496
- Erscheinungstermin: 27. November 2012
- Englisch
- ISBN-13: 9781466517493
- Artikelnr.: 57102106
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Werner Vach is a professor of medical informatics and clinical epidemiology at the University of Freiburg. Dr. Vach has co-authored more than 150 publications in medical journals. His research encompasses biostatistics methodology in the areas of incomplete covariate data, prognostic studies, diagnostic studies, and agreement studies.
THE BASICS: Why Use Regression Models? An Introductory Example. The
Classical Multiple Regression Model. Adjusted Effects. Inference for the
Classical Multiple Regression Model. Logistic Regression. Inference for the
Logistic Regression Model. Categorical Covariates. Handling Ordered
Categories: A First Lesson in Regression Modeling Strategies. The Cox
Proportional Hazard Model. Common Pitfalls in Using Regression Models.
ADVANCED TOPICS AND TECHNIQUES: Some Useful Technicalities. Comparing
Regression Coefficients. Power and Sample Size. The Selection of the
Sample. The Selection of Covariates. Modeling Nonlinear Effects.
Transformation of Covariates. Effect Modification and Interactions.
Applying Regression Models to Clustered Data. Applying Regression Models to
Longitudinal Data. The Impact of Measurement Error. The Impact of
Incomplete Covariate Data. RISK SCORES AND PREDICTORS: Risk Scores.
Construction of Predictors. Evaluating the Predictive Performance. Outlook:
Construction of Parsimonious Predictors. MISCELLANEOUS: Alternatives to
Regression Modeling. Specific Regression Models. Specific Usages of
Regression Models. What Is a Good Model? Final Remarks on the Role of
Prespecified Models and Model Development. MATHEMATICAL DETAILS:
Mathematics behind the Classical Linear Regression Model. Mathematics
behind the Logistic Regression Model. The Modern Way of Inference.
Mathematics for Risk Scores and Predictors. Bibliography. Index.
Classical Multiple Regression Model. Adjusted Effects. Inference for the
Classical Multiple Regression Model. Logistic Regression. Inference for the
Logistic Regression Model. Categorical Covariates. Handling Ordered
Categories: A First Lesson in Regression Modeling Strategies. The Cox
Proportional Hazard Model. Common Pitfalls in Using Regression Models.
ADVANCED TOPICS AND TECHNIQUES: Some Useful Technicalities. Comparing
Regression Coefficients. Power and Sample Size. The Selection of the
Sample. The Selection of Covariates. Modeling Nonlinear Effects.
Transformation of Covariates. Effect Modification and Interactions.
Applying Regression Models to Clustered Data. Applying Regression Models to
Longitudinal Data. The Impact of Measurement Error. The Impact of
Incomplete Covariate Data. RISK SCORES AND PREDICTORS: Risk Scores.
Construction of Predictors. Evaluating the Predictive Performance. Outlook:
Construction of Parsimonious Predictors. MISCELLANEOUS: Alternatives to
Regression Modeling. Specific Regression Models. Specific Usages of
Regression Models. What Is a Good Model? Final Remarks on the Role of
Prespecified Models and Model Development. MATHEMATICAL DETAILS:
Mathematics behind the Classical Linear Regression Model. Mathematics
behind the Logistic Regression Model. The Modern Way of Inference.
Mathematics for Risk Scores and Predictors. Bibliography. Index.
THE BASICS: Why Use Regression Models? An Introductory Example. The
Classical Multiple Regression Model. Adjusted Effects. Inference for the
Classical Multiple Regression Model. Logistic Regression. Inference for the
Logistic Regression Model. Categorical Covariates. Handling Ordered
Categories: A First Lesson in Regression Modeling Strategies. The Cox
Proportional Hazard Model. Common Pitfalls in Using Regression Models.
ADVANCED TOPICS AND TECHNIQUES: Some Useful Technicalities. Comparing
Regression Coefficients. Power and Sample Size. The Selection of the
Sample. The Selection of Covariates. Modeling Nonlinear Effects.
Transformation of Covariates. Effect Modification and Interactions.
Applying Regression Models to Clustered Data. Applying Regression Models to
Longitudinal Data. The Impact of Measurement Error. The Impact of
Incomplete Covariate Data. RISK SCORES AND PREDICTORS: Risk Scores.
Construction of Predictors. Evaluating the Predictive Performance. Outlook:
Construction of Parsimonious Predictors. MISCELLANEOUS: Alternatives to
Regression Modeling. Specific Regression Models. Specific Usages of
Regression Models. What Is a Good Model? Final Remarks on the Role of
Prespecified Models and Model Development. MATHEMATICAL DETAILS:
Mathematics behind the Classical Linear Regression Model. Mathematics
behind the Logistic Regression Model. The Modern Way of Inference.
Mathematics for Risk Scores and Predictors. Bibliography. Index.
Classical Multiple Regression Model. Adjusted Effects. Inference for the
Classical Multiple Regression Model. Logistic Regression. Inference for the
Logistic Regression Model. Categorical Covariates. Handling Ordered
Categories: A First Lesson in Regression Modeling Strategies. The Cox
Proportional Hazard Model. Common Pitfalls in Using Regression Models.
ADVANCED TOPICS AND TECHNIQUES: Some Useful Technicalities. Comparing
Regression Coefficients. Power and Sample Size. The Selection of the
Sample. The Selection of Covariates. Modeling Nonlinear Effects.
Transformation of Covariates. Effect Modification and Interactions.
Applying Regression Models to Clustered Data. Applying Regression Models to
Longitudinal Data. The Impact of Measurement Error. The Impact of
Incomplete Covariate Data. RISK SCORES AND PREDICTORS: Risk Scores.
Construction of Predictors. Evaluating the Predictive Performance. Outlook:
Construction of Parsimonious Predictors. MISCELLANEOUS: Alternatives to
Regression Modeling. Specific Regression Models. Specific Usages of
Regression Models. What Is a Good Model? Final Remarks on the Role of
Prespecified Models and Model Development. MATHEMATICAL DETAILS:
Mathematics behind the Classical Linear Regression Model. Mathematics
behind the Logistic Regression Model. The Modern Way of Inference.
Mathematics for Risk Scores and Predictors. Bibliography. Index.