Pablo Raúl Stinga
Regularity Techniques for Elliptic PDEs and the Fractional Laplacian (eBook, ePUB)
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Pablo Raúl Stinga
Regularity Techniques for Elliptic PDEs and the Fractional Laplacian (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 0.75MB
Andere Kunden interessierten sich auch für
- Pablo Raúl StingaRegularity Techniques for Elliptic PDEs and the Fractional Laplacian (eBook, PDF)52,95 €
- Sujaul ChowdhuryNumerical Solutions of Boundary Value Problems of Non-linear Differential Equations (eBook, ePUB)21,95 €
- Svetlin G. GeorgievMultiplicative Analytic Geometry (eBook, ePUB)97,95 €
- Thomas F. BanchoffDifferential Geometry of Curves and Surfaces (eBook, ePUB)74,95 €
- Patrick CabauDirect and Projective Limits of Geometric Banach Structures. (eBook, ePUB)52,95 €
- Thomas F. BanchoffDifferential Geometry of Curves and Surfaces (eBook, ePUB)59,95 €
- Svetlin G. GeorgievMultiplicative Differential Geometry (eBook, ePUB)59,95 €
-
-
-
This book presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 344
- Erscheinungstermin: 21. Juni 2024
- Englisch
- ISBN-13: 9781040041574
- Artikelnr.: 70483097
- Verlag: Taylor & Francis
- Seitenzahl: 344
- Erscheinungstermin: 21. Juni 2024
- Englisch
- ISBN-13: 9781040041574
- Artikelnr.: 70483097
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Pablo Raúl Stinga earned his Licenciatura en Ciencias Matemáticas degree at Universidad Nacional de San Luis, in San Luis, Argentina (2005). He earned his Máster en Matemáticas y Aplicaciones (2007), and his Doctorado en Matemáticas Doctor Europeus under the direction of José L.Torrea at Universidad Aut¿noma de Madrid, Spain (2010). He held postdoctoral research positions at Universidad de Zaragoza, Spain (2010) and Universidad de La Rioja, Spain (2011-2012). During the period 2012-2015, he was the R.H. Bing Fellow in Mathematics No.1 Instructor at the University of Texas at Austin, USA, where he worked as a postdoctoral researcher under the supervision of Luis A. Caffarelli. He is currently Associate Professor at Iowa State University, USA. His research interests are in analysis, partial differential equations and nonlocal fractional equations.
1. Introduction. 1.1. Divergence Form Equations. 1.2. Nondivergence Form Equations. 1.3. Nonlocal Equations: The Fractional Laplacian. Section I. The Laplacian. 2. Harmonic Functions. 2.1. Definition and Examples. 2.2. The Mean Value Property and Smoothness. 2.3. Consequences of the Mean Value Property. 3. The Schauder estimates for the Laplacian. 3.1. Review of Fourier Transform. 3.2. The Poisson Equation: Ideas of the Method. 3.3. The Classical Heat Semigroup. 3.4. The Fundamental Solution of the Laplacian. 3.5. Solvability of the Poisson Equation. 3.6. Schauder Estimates by Representation Formulas. 3.7. Schauder Estimates by the Method of Maximum Principle. 4. The Calder
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.
1. Introduction. 1.1. Divergence Form Equations. 1.2. Nondivergence Form Equations. 1.3. Nonlocal Equations: The Fractional Laplacian. Section I. The Laplacian. 2. Harmonic Functions. 2.1. Definition and Examples. 2.2. The Mean Value Property and Smoothness. 2.3. Consequences of the Mean Value Property. 3. The Schauder estimates for the Laplacian. 3.1. Review of Fourier Transform. 3.2. The Poisson Equation: Ideas of the Method. 3.3. The Classical Heat Semigroup. 3.4. The Fundamental Solution of the Laplacian. 3.5. Solvability of the Poisson Equation. 3.6. Schauder Estimates by Representation Formulas. 3.7. Schauder Estimates by the Method of Maximum Principle. 4. The Calder
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.