This book is a collection of invited contributions from leading researchers in machine learning. Comprised of 21 chapters, this comprehensive reference covers the latest research and advances in regularization, sparsity, and compressed sensing; describes recent progress in convex and large-scale optimization, kernel methods, and support vector machines; and discusses output kernel learning, domain adaptation, multi-layer support vector machines, and more.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.