Reliable Robot Localization (eBook, ePUB)
A Constraint-Programming Approach Over Dynamical Systems
Alle Infos zum eBook verschenken
Reliable Robot Localization (eBook, ePUB)
A Constraint-Programming Approach Over Dynamical Systems
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Localization for underwater robots remains a challenging issue. Typical sensors, such as Global Navigation Satellite System (GNSS) receivers, cannot be used under the surface and other inertial systems suffer from a strong integration drift. On top of that, the seabed is generally uniform and unstructured, making it difficult to apply Simultaneous Localization and Mapping (SLAM) methods to perform localization. Reliable Robot Localization presents an innovative new method which can be characterized as a raw-data SLAM approach. It differs from extant methods by considering time as a standard…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.56MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 288
- Erscheinungstermin: 3. Dezember 2019
- Englisch
- ISBN-13: 9781119680963
- Artikelnr.: 58421390
- Verlag: John Wiley & Sons
- Seitenzahl: 288
- Erscheinungstermin: 3. Dezember 2019
- Englisch
- ISBN-13: 9781119680963
- Artikelnr.: 58421390
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
(·) = v(·) 73 3.2.1. Definition and proof 74 3.2.2. Contraction of the derivative 79 3.2.3. Implementation 80 3.3. Contractor-based approach for state estimation 82 3.3.1. Constraint network of state equations 84 3.3.2. Fixed-point propagations 85 3.3.3. Theoretical example of interest
=
sin(x) 87 3.4. Robotic applications 90 3.4.1. Causal kinematic chain 90 3.4.2. Higher-order differential constraints 93 3.4.3. Kidnapped robot problem 93 3.4.4. Actual experiment with the Daurade AUV 94 3.5. Conclusion 99 Chapter 4. Trajectories Under Evaluation Constraints 101 4.1. Introduction 101 4.1.1. Contribution of this work 101 4.1.2. Motivations to deal with time uncertainties 102 4.2. Generic contractor for trajectory evaluation 105 4.2.1. Tube contractor for the constraint Leval : z = y(t) 105 4.2.2. Implementation 111 4.2.3. Application to state estimation 113 4.3. Robotic applications 114 4.3.1. Range-only robot localization with low-cost beacons 114 4.3.2. Reliable correction of a drifting clock 121 4.4. Conclusion 127 Part 3. Robotics-related Contributions 129 Introduction to Part 3 131 Chapter 5. Looped Trajectories: From Detections to Proofs 133 5.1. Introduction 133 5.1.1. The difference between detection and verification 133 5.1.2. Proprioceptive versus exteroceptive measurements 134 5.1.3. The two-dimensional case 135 5.2. Proprioceptive loop detections 135 5.2.1. Formalization 136 5.2.2. Loop detections in a bounded-error context 137 5.2.3. Approximation of the solution set T 138 5.3. Proving loops in detection sets 141 5.3.1. Formalism: zero verification 141 5.3.2. Topological degree for zero verification 141 5.3.3. Loop existence test 145 5.3.4. Reliable number of loops 149 5.4. Applications 151 5.4.1. The Redermor mission 152 5.4.2. The Daurade mission 156 5.4.3. Optimality of the approach 159 5.5. Conclusion 163 Chapter 6. A Reliable Temporal Approach for the SLAM Problem 165 6.1. Introduction 165 6.1.1. Motivations 165 6.1.2. SLAM formalism 167 6.1.3. Inter-temporalities 169 6.2. Temporal SLAM method 172 6.2.1. General assumptions 172 6.2.2. Temporal resolution 173 6.2.3. Lp
z: inter-temporal implication constraint 174 6.2.4. The Cp
z contractor 178 6.2.5. Temporal SLAM algorithm 186 6.3. Underwater application: bathymetric SLAM 190 6.3.1. Context 190 6.3.2. Daurade's underwater mission, October 20, 2015 194 6.3.3. Daurade's underwater mission, October 19, 2015 199 6.3.4. Overview of the environment 202 6.4. Discussions 203 6.4.1. Relation to the state of the art 203 6.4.2. About a Bayesian resolution 205 6.4.3. Biased sensors 205 6.4.4. Fluctuating measurements 205 6.5. Conclusion 207 Conclusion 211 References 217 Index 229
(·) = v(·) 73 3.2.1. Definition and proof 74 3.2.2. Contraction of the derivative 79 3.2.3. Implementation 80 3.3. Contractor-based approach for state estimation 82 3.3.1. Constraint network of state equations 84 3.3.2. Fixed-point propagations 85 3.3.3. Theoretical example of interest
=
sin(x) 87 3.4. Robotic applications 90 3.4.1. Causal kinematic chain 90 3.4.2. Higher-order differential constraints 93 3.4.3. Kidnapped robot problem 93 3.4.4. Actual experiment with the Daurade AUV 94 3.5. Conclusion 99 Chapter 4. Trajectories Under Evaluation Constraints 101 4.1. Introduction 101 4.1.1. Contribution of this work 101 4.1.2. Motivations to deal with time uncertainties 102 4.2. Generic contractor for trajectory evaluation 105 4.2.1. Tube contractor for the constraint Leval : z = y(t) 105 4.2.2. Implementation 111 4.2.3. Application to state estimation 113 4.3. Robotic applications 114 4.3.1. Range-only robot localization with low-cost beacons 114 4.3.2. Reliable correction of a drifting clock 121 4.4. Conclusion 127 Part 3. Robotics-related Contributions 129 Introduction to Part 3 131 Chapter 5. Looped Trajectories: From Detections to Proofs 133 5.1. Introduction 133 5.1.1. The difference between detection and verification 133 5.1.2. Proprioceptive versus exteroceptive measurements 134 5.1.3. The two-dimensional case 135 5.2. Proprioceptive loop detections 135 5.2.1. Formalization 136 5.2.2. Loop detections in a bounded-error context 137 5.2.3. Approximation of the solution set T 138 5.3. Proving loops in detection sets 141 5.3.1. Formalism: zero verification 141 5.3.2. Topological degree for zero verification 141 5.3.3. Loop existence test 145 5.3.4. Reliable number of loops 149 5.4. Applications 151 5.4.1. The Redermor mission 152 5.4.2. The Daurade mission 156 5.4.3. Optimality of the approach 159 5.5. Conclusion 163 Chapter 6. A Reliable Temporal Approach for the SLAM Problem 165 6.1. Introduction 165 6.1.1. Motivations 165 6.1.2. SLAM formalism 167 6.1.3. Inter-temporalities 169 6.2. Temporal SLAM method 172 6.2.1. General assumptions 172 6.2.2. Temporal resolution 173 6.2.3. Lp
z: inter-temporal implication constraint 174 6.2.4. The Cp
z contractor 178 6.2.5. Temporal SLAM algorithm 186 6.3. Underwater application: bathymetric SLAM 190 6.3.1. Context 190 6.3.2. Daurade's underwater mission, October 20, 2015 194 6.3.3. Daurade's underwater mission, October 19, 2015 199 6.3.4. Overview of the environment 202 6.4. Discussions 203 6.4.1. Relation to the state of the art 203 6.4.2. About a Bayesian resolution 205 6.4.3. Biased sensors 205 6.4.4. Fluctuating measurements 205 6.5. Conclusion 207 Conclusion 211 References 217 Index 229