Maged Marghany
Remote Sensing and Image Processing in Mineralogy (eBook, ePUB)
68,95 €
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
68,95 €
Als Download kaufen
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
34 °P sammeln
Maged Marghany
Remote Sensing and Image Processing in Mineralogy (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Remote Sensing and Image Processing in Mineralogy reveals the critical tools required to comprehend the latest technology surrounding the remote sensing imaging of mineralogy, oil and gas explorations.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 46.32MB
Andere Kunden interessierten sich auch für
- Maged MarghanyRemote Sensing and Image Processing in Mineralogy (eBook, PDF)68,95 €
- Remote Sensing Handbook, Volume III (eBook, ePUB)198,95 €
- Remote Sensing Handbook, Volume I (eBook, ePUB)52,95 €
- Remote Sensing Handbook, Volume IV (eBook, ePUB)52,95 €
- Remote Sensing Handbook, Volume VI (eBook, ePUB)52,95 €
- Remote Sensing Handbook, Volume II (eBook, ePUB)52,95 €
- Remote Sensing Handbook, Volume V (eBook, ePUB)52,95 €
-
-
-
Remote Sensing and Image Processing in Mineralogy reveals the critical tools required to comprehend the latest technology surrounding the remote sensing imaging of mineralogy, oil and gas explorations.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 300
- Erscheinungstermin: 2. März 2022
- Englisch
- ISBN-13: 9781000548761
- Artikelnr.: 63205660
- Verlag: Taylor & Francis
- Seitenzahl: 300
- Erscheinungstermin: 2. März 2022
- Englisch
- ISBN-13: 9781000548761
- Artikelnr.: 63205660
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Maged Marghany is currently the director of Global Geoinformation, Sdn. Bhd. In 2020 he was ranked amongst the top 2 percent of scientists in a global list compiled by the prestigious Stanford University. He also ranked as the first oil spill scientist in a global list of over last 50 years compiled by the prestigious Universidade Estadual de Feira de Santana, Universidade Federal da Bahia, and Universidade Federal de Pernambuco; Brazil.
He is the author of 6 titles including: Advanced Remote Sensing Technology for Tsunami Modelling and Forecasting which is published by Routledge Taylor and Francis Group, CRC and Synthetic Aperture Radar Imaging Mechanism for Oil Spills, which is published by Elsevier, His research specializes in microwave remote sensing and remote sensing for mineralogy detection and mapping. Previously, he worked as a professor of remote sensing in Indonesian and Malaysian universities. Maged has earned many degrees including a post-doctoral in radar remote sensing from the International Institute for Aerospace Survey and Earth Sciences, a PhD in environmental remote sensing from the Universiti Putra Malaysia, a Master of Science in Physical oceanography from the University Pertanian Malaysia, general and special Diploma of Education and a Bachelor of Science in physical oceanography from the University of Alexandria in Egypt. Maged has published well over 250 papers in international conferences and journals and is active in International Geoinformatic, and the International Society for Photogrammetry and Remote Sensing (ISPRS).
He is the author of 6 titles including: Advanced Remote Sensing Technology for Tsunami Modelling and Forecasting which is published by Routledge Taylor and Francis Group, CRC and Synthetic Aperture Radar Imaging Mechanism for Oil Spills, which is published by Elsevier, His research specializes in microwave remote sensing and remote sensing for mineralogy detection and mapping. Previously, he worked as a professor of remote sensing in Indonesian and Malaysian universities. Maged has earned many degrees including a post-doctoral in radar remote sensing from the International Institute for Aerospace Survey and Earth Sciences, a PhD in environmental remote sensing from the Universiti Putra Malaysia, a Master of Science in Physical oceanography from the University Pertanian Malaysia, general and special Diploma of Education and a Bachelor of Science in physical oceanography from the University of Alexandria in Egypt. Maged has published well over 250 papers in international conferences and journals and is active in International Geoinformatic, and the International Society for Photogrammetry and Remote Sensing (ISPRS).
1. Principles of Mineralogy, Oil and Gas 2. Quantization of Minerals and
their Interactions with Remote Sensing Photons 3. Quantum Computing of
Image Processing 4. Quantum Spectral Libraries of Minerals in Optical
Remote Sensing Data 5. Quantum Multispectral and Hyperspectral Remote
Sensing Imaging of Alteration Minerals 6. Evolving Quantum Image Processing
Tool for Lineament Automatic Detection in Optical Remote Sensing Satellite
Data 7. Quantum Support Vector Machine in Retrieving Clay Mineral
Saturation in Multispectral Sentinel-2 Satellite Data 8. Automatic
Detection of Oil Seeps in Synthetic Aperture Radar Using Quantum Immune
Fast Spectral Clustering 9. Quantum Interferometry Radar for Oil and Gas
Explorations 10. Quantum Machine Learning Algorithm for Iron, Gold, and
Copper Detection in Optical Remote Sensing Data 11. Four-Dimensional
Hologram Interferometry for Automatic Detection of Copper Mineralization
Using Terrasar-X Satellite Data
their Interactions with Remote Sensing Photons 3. Quantum Computing of
Image Processing 4. Quantum Spectral Libraries of Minerals in Optical
Remote Sensing Data 5. Quantum Multispectral and Hyperspectral Remote
Sensing Imaging of Alteration Minerals 6. Evolving Quantum Image Processing
Tool for Lineament Automatic Detection in Optical Remote Sensing Satellite
Data 7. Quantum Support Vector Machine in Retrieving Clay Mineral
Saturation in Multispectral Sentinel-2 Satellite Data 8. Automatic
Detection of Oil Seeps in Synthetic Aperture Radar Using Quantum Immune
Fast Spectral Clustering 9. Quantum Interferometry Radar for Oil and Gas
Explorations 10. Quantum Machine Learning Algorithm for Iron, Gold, and
Copper Detection in Optical Remote Sensing Data 11. Four-Dimensional
Hologram Interferometry for Automatic Detection of Copper Mineralization
Using Terrasar-X Satellite Data
1. Principles of Mineralogy, Oil and Gas 2. Quantization of Minerals and
their Interactions with Remote Sensing Photons 3. Quantum Computing of
Image Processing 4. Quantum Spectral Libraries of Minerals in Optical
Remote Sensing Data 5. Quantum Multispectral and Hyperspectral Remote
Sensing Imaging of Alteration Minerals 6. Evolving Quantum Image Processing
Tool for Lineament Automatic Detection in Optical Remote Sensing Satellite
Data 7. Quantum Support Vector Machine in Retrieving Clay Mineral
Saturation in Multispectral Sentinel-2 Satellite Data 8. Automatic
Detection of Oil Seeps in Synthetic Aperture Radar Using Quantum Immune
Fast Spectral Clustering 9. Quantum Interferometry Radar for Oil and Gas
Explorations 10. Quantum Machine Learning Algorithm for Iron, Gold, and
Copper Detection in Optical Remote Sensing Data 11. Four-Dimensional
Hologram Interferometry for Automatic Detection of Copper Mineralization
Using Terrasar-X Satellite Data
their Interactions with Remote Sensing Photons 3. Quantum Computing of
Image Processing 4. Quantum Spectral Libraries of Minerals in Optical
Remote Sensing Data 5. Quantum Multispectral and Hyperspectral Remote
Sensing Imaging of Alteration Minerals 6. Evolving Quantum Image Processing
Tool for Lineament Automatic Detection in Optical Remote Sensing Satellite
Data 7. Quantum Support Vector Machine in Retrieving Clay Mineral
Saturation in Multispectral Sentinel-2 Satellite Data 8. Automatic
Detection of Oil Seeps in Synthetic Aperture Radar Using Quantum Immune
Fast Spectral Clustering 9. Quantum Interferometry Radar for Oil and Gas
Explorations 10. Quantum Machine Learning Algorithm for Iron, Gold, and
Copper Detection in Optical Remote Sensing Data 11. Four-Dimensional
Hologram Interferometry for Automatic Detection of Copper Mineralization
Using Terrasar-X Satellite Data