Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Jan Natolski behandelt die Problematik der Quantifizierung des Risikokapitals aus einer theoretischen Perspektive, die in wertvolle Impulse für die praktische Handhabung mündet. Dies ist ein wichtiger Schritt, da Versicherungsunternehmen durch die Richtlinie Solvency II verpflichtet sind, genügend Risikokapital zu hinterlegen, um die Gefahr der Insolvenz möglichst gering zu halten. Als zentrales Resultat zeigt der Autor, dass die in der Praxis verwendete Methode der Replikation mathematisch fundiert ist. Dabei setzt er Methoden aus verschiedenen mathematischen Gebieten, so z.B. der Optimierung und der Stochastik, ein.…mehr
Jan Natolski behandelt die Problematik der Quantifizierung des Risikokapitals aus einer theoretischen Perspektive, die in wertvolle Impulse für die praktische Handhabung mündet. Dies ist ein wichtiger Schritt, da Versicherungsunternehmen durch die Richtlinie Solvency II verpflichtet sind, genügend Risikokapital zu hinterlegen, um die Gefahr der Insolvenz möglichst gering zu halten. Als zentrales Resultat zeigt der Autor, dass die in der Praxis verwendete Methode der Replikation mathematisch fundiert ist. Dabei setzt er Methoden aus verschiedenen mathematischen Gebieten, so z.B. der Optimierung und der Stochastik, ein.
Jan Natolski wurde an der Universität Augsburg promoviert und ist aktuell Mitarbeiter einer Lebensversicherung im Bereich Risikomanagement.
Inhaltsangabe
Definition des Replikationsproblems.- Begründung der Replikationstheorie.- Diskussion der Replikationsparameter.- Konvergenz von Monte-Carlo-Verfahren.
Definition des Replikationsproblems.- Begründung der Replikationstheorie.- Diskussion der Replikationsparameter.- Konvergenz von Monte-Carlo-Verfahren.
Definition des Replikationsproblems.- Begründung der Replikationstheorie.- Diskussion der Replikationsparameter.- Konvergenz von Monte-Carlo-Verfahren.
Definition des Replikationsproblems.- Begründung der Replikationstheorie.- Diskussion der Replikationsparameter.- Konvergenz von Monte-Carlo-Verfahren.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497