62,95 €
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
62,95 €
62,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
Als Download kaufen
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
Jetzt verschenken
62,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
  • Format: PDF

On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on…mehr

Produktbeschreibung
On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne-Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
François Digne is Emeritus Professor at the Université de Picardie Jules Verne, Amiens. He works on finite reductive groups, braid and Artin groups. He has also co-authored with Jean Michel the monograph Foundations of Garside Theory (2015) and several notable papers on Deligne-Lusztig varieties.