The theory of unitary group representations began with finite groups, and blossomed in the twentieth century both as a natural abstraction of classical harmonic analysis, and as a tool for understanding various physical phenomena. Combining basic theory and new results, this monograph is a fresh and self-contained exposition of group representations and harmonic analysis on solvable Lie groups. Covering a range of topics from stratification methods for linear solvable actions in a finite-dimensional vector space, to complete proofs of essential elements of Mackey theory and a unified development of the main features of the orbit method for solvable Lie groups, the authors provide both well-known and new examples, with a focus on those relevant to contemporary applications. Clear explanations of the basic theory make this an invaluable reference guide for graduate students as well as researchers.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.