Damien Irving, Kate Hertweck, Luke Johnston, Joel Ostblom, Charlotte Wickham, Greg Wilson
Research Software Engineering with Python (eBook, ePUB)
Building software that makes research possible
59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
59,95 €
Als Download kaufen
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
Damien Irving, Kate Hertweck, Luke Johnston, Joel Ostblom, Charlotte Wickham, Greg Wilson
Research Software Engineering with Python (eBook, ePUB)
Building software that makes research possible
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Based on the practical experiences of its authors, who collectively have spent several decades teaching software skills to scientists, this book covers everything graduate-level researchers need to automate their workflows, collaborate with colleagues, and ensure that their results are trustworthy.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 35.4MB
Andere Kunden interessierten sich auch für
- Damien IrvingResearch Software Engineering with Python (eBook, PDF)59,95 €
- Cristina Videira LopesExercises in Programming Style (eBook, ePUB)31,95 €
- Handbook of Computer Programming with Python (eBook, ePUB)94,95 €
- Mohammad RostamiTransfer Learning through Embedding Spaces (eBook, ePUB)46,95 €
- Richard J. RoigerJust Enough R! (eBook, ePUB)41,95 €
- Patrick BoscAlgorithm Design: A Methodological Approach - 150 problems and detailed solutions (eBook, ePUB)50,95 €
- Ashwin LallMathematical Foundations of Computer Science (eBook, ePUB)46,95 €
-
-
-
Based on the practical experiences of its authors, who collectively have spent several decades teaching software skills to scientists, this book covers everything graduate-level researchers need to automate their workflows, collaborate with colleagues, and ensure that their results are trustworthy.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 528
- Erscheinungstermin: 5. August 2021
- Englisch
- ISBN-13: 9781000417159
- Artikelnr.: 62359836
- Verlag: Taylor & Francis
- Seitenzahl: 528
- Erscheinungstermin: 5. August 2021
- Englisch
- ISBN-13: 9781000417159
- Artikelnr.: 62359836
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Damien B. Irving is post-doctoral researcher in climate science at the University of New South Wales living in Hobart, Tasmania. With a strong interest in data science education and open/reproducible research, Damien is involved in The Carpentries community as an instructor, lesson author and Regional Coordinator for Australia, is an Associate Editor with the Journal of Open Research Software, and is currently the Global Coordinator for the Research Bazaar, a worldwide festival promoting the digital literacy emerging at the center of modern research.
Dr. Kate L. Hertweck is a scientist and educator who endeavors to uphold core values like diversity/equity/inclusion, accessibility of information, and learning over knowing. They currently lead training and community efforts to support biomedical researchers at Fred Hutchinson Cancer Research Center in Seattle, Washington. Kate is an instructor and trainer for the Carpentries and has also participated in that group's lesson development/maintenance and community governance.
Dr. Luke Johnston is a diabetes epidemiologist working at the Steno Diabetes Center Aarhus in Denmark. He is passionate about educating researchers on modern computing tools and skills, having taught many Carpentry workshops as well as creating and instructing several intensive courses teaching computing skills and analytic reproducibility to diabetes researchers. When he isn't teaching or doing research, he is building software tools to automate common research workflows and tasks.
Dr. Joel Ostblom is a post-doctoral teaching fellow in the Master's of Data Science program at the University of British Columbia in Vancouver, B.C. He has co-created or led the development of several courses and workshops at the University of Toronto and the University of British Columbia. Joel cares deeply about spreading data literacy and excitement over programmatic data analysis, which is reflected in his contributions to open source projects and data science learning resources.
Dr. Charlotte Wickham is a data scientist and educator, who teaches in the Statistics Department at Oregon State University, as well as operating her own consulting and training business. She loves to help people build their data super powers in the R programming language. She currently lives in Corvallis, Oregon, but originally hails from New Zealand.
Dr. Greg Wilson is a programmer and educator based in Toronto, Ontario, and was the co-founder and first Executive Director of Software Carpentry. A member of the Python Software Foundation, Greg has written or edited over a dozen books and received ACM SIGSOFT's Influential Educator Award in 2020.
Dr. Kate L. Hertweck is a scientist and educator who endeavors to uphold core values like diversity/equity/inclusion, accessibility of information, and learning over knowing. They currently lead training and community efforts to support biomedical researchers at Fred Hutchinson Cancer Research Center in Seattle, Washington. Kate is an instructor and trainer for the Carpentries and has also participated in that group's lesson development/maintenance and community governance.
Dr. Luke Johnston is a diabetes epidemiologist working at the Steno Diabetes Center Aarhus in Denmark. He is passionate about educating researchers on modern computing tools and skills, having taught many Carpentry workshops as well as creating and instructing several intensive courses teaching computing skills and analytic reproducibility to diabetes researchers. When he isn't teaching or doing research, he is building software tools to automate common research workflows and tasks.
Dr. Joel Ostblom is a post-doctoral teaching fellow in the Master's of Data Science program at the University of British Columbia in Vancouver, B.C. He has co-created or led the development of several courses and workshops at the University of Toronto and the University of British Columbia. Joel cares deeply about spreading data literacy and excitement over programmatic data analysis, which is reflected in his contributions to open source projects and data science learning resources.
Dr. Charlotte Wickham is a data scientist and educator, who teaches in the Statistics Department at Oregon State University, as well as operating her own consulting and training business. She loves to help people build their data super powers in the R programming language. She currently lives in Corvallis, Oregon, but originally hails from New Zealand.
Dr. Greg Wilson is a programmer and educator based in Toronto, Ontario, and was the co-founder and first Executive Director of Software Carpentry. A member of the Python Software Foundation, Greg has written or edited over a dozen books and received ACM SIGSOFT's Influential Educator Award in 2020.
Welcome
0.1The Big Picture
0.2 Intended Audience
0.3 What You Will Learn
0.4 Using this Book
0.5 Contributing and Re-Use
0.6 Acknowledgments
Getting Started
1.1 Project Structure
1.2 Downloading the Data
1.3 Installing the Software
1.4 Summary
1.5 Exercises
1.6 Key Points
The Basics of the Unix Shell
2.1 Exploring Files and Directories
2.2 Moving Around
2.3 Creating New Files and Directories
2.4 Moving Files and Directories
2.5 Copying Files and Directories
2.6 Deleting Files and Directories
2.7 Wildcards
2.8 Reading the Manual
2.9 Summary
2.10 Exercises
2.11 Key Points
Building Tools with the Unix Shell
3.1 Combining Commands
3.2 How Pipes Work
3.3 Repeating Commands on Many Files
3.4 Variable Names
3.5 Redoing Things
3.6 Creating New Filenames Automatically
3.7 Summary
3.8 Exercises
3.9 Key Points
Going Further with the Unix Shell
4.1 Creating New Commands
4.2 Making Scripts More Versatile
4.3 Turning Interactive Work into a Script
4.4 Finding Things in Files
4.5 Finding Files
4.6 Configuring the Shell
4.7 Summary
4.8 Exercises .
4.9 Key Points
Building Command-Line Tools with Python
5.1 Programs and Modules
5.2 Handling Command-Line Options
5.3 Documentation
5.4 Counting Words
5.5 Pipelining
5.6 Positional and Optional Arguments
5.7 Collating Results
5.8 Writing Our Own Modules
5.9 Plotting
5.10 Summary
5.11 Exercises
5.12 Key Points
Using Git at the Command Line
6.1 Setting Up
6.2 Creating a New Repository
6.3 Adding Existing Work
6.4 Describing Commits
6.5 Saving and Tracking Changes
6.6 Synchronizing with Other Repositories
6.7 Exploring History
6.8 Restoring Old Versions of Files
6.9 Ignoring Files
6.10 Summary
6.11 Exercises
6.12 Key Points
Going Further with Git
7.1 What's a Branch?
7.2 Creating a Branch
7.3 What Curve Should We Fit?
7.4 Verifying Zipf's Law
7.5 Merging
7.6 Handling Conflicts
7.7 A Branch-Based Workflow
7.8 Using Other People's Work
7.9 Pull Requests
7.10 Handling Conflicts in Pull Requests
7.11 Summary
7.12 Exercises
7.13 Key Points
Working in Teams
8.1 What is a Project?
8.2 Include Everyone
8.3 Establish a Code of Conduct
8.4 Include a License
8.5 Planning
8.6 Bug Reports
8.7 Labeling Issues
8.8 Prioritizing
8.9 Meetings
8.10 Making Decisions
8.11 Make All This Obvious to Newcomers
8.12 Handling Conflict
8.13 Summary
8.14 Exercises
8.15 Key Points
Automating Analyses with Make
9.1 Updating a Single File
9.2 Managing Multiple Files
9.3 Updating Files When Programs Change
9.4 Reducing Repetition in a Makefile
9.5 Automatic Variables
9.6 Generic Rules
9.7 Defining Sets of Files
9.8 Documenting a Makefile
9.9 Automating Entire Analyses
9.10 Summary
9.11 Exercises
9.12 Key Points
Configuring Programs
10.1 Configuration File Formats
10.2 Matplotlib Configuration
10.3 The Global Configuration File
10.4 The User Configuration File
10.5 Adding Command-Line Options
10.6 A Job Control File
10.7 Summary
10.8 Exercises
10.9 Key Points
Testing Software
11.1 Assertions
11.2 Unit Testing
11.3 Testing Frameworks
11.4 Testing Floating-Point Values
11.5 Integration Testing
11.6 Regression Testing
11.7 Test Coverage
11.8 Continuous Integration
11.9 When to Write Tests
11.10 Summary
11.11 Exercises
11.12 Key Points
Handling Errors
12.1 Exceptions
12.2 Writing Useful Error Messages
12.3 Testing Error Handling
12.4 Reporting Errors
12.5 Summary
12.6 Exercises
12.7 Key Points
Tracking Provenance
13.1 Data Provenance
13.2 Code Provenance
13.3 Summary
13.4 Exercises
13.5 Key Points
Creating Packages with Python
14.1 Creating a Python Package
14.2 Virtual Environments
14.3 Installing a Development Package
14.4 What Installation Does
14.5 Distributing Packages
14.6 Documenting Packages
14.7 Software Journals
14.8 Summary
14.9 Exercises
14.10 Key Points
Finale
15.1 Why We Wrote This Book
Appendix
A Solutions
B Learning Objectives
C Key Points
D Project Tree
E Working Remotely
F Writing Readable Code
G Documenting Programs
H YAML
I Anaconda
J Glossary
K References
Index
0.1The Big Picture
0.2 Intended Audience
0.3 What You Will Learn
0.4 Using this Book
0.5 Contributing and Re-Use
0.6 Acknowledgments
Getting Started
1.1 Project Structure
1.2 Downloading the Data
1.3 Installing the Software
1.4 Summary
1.5 Exercises
1.6 Key Points
The Basics of the Unix Shell
2.1 Exploring Files and Directories
2.2 Moving Around
2.3 Creating New Files and Directories
2.4 Moving Files and Directories
2.5 Copying Files and Directories
2.6 Deleting Files and Directories
2.7 Wildcards
2.8 Reading the Manual
2.9 Summary
2.10 Exercises
2.11 Key Points
Building Tools with the Unix Shell
3.1 Combining Commands
3.2 How Pipes Work
3.3 Repeating Commands on Many Files
3.4 Variable Names
3.5 Redoing Things
3.6 Creating New Filenames Automatically
3.7 Summary
3.8 Exercises
3.9 Key Points
Going Further with the Unix Shell
4.1 Creating New Commands
4.2 Making Scripts More Versatile
4.3 Turning Interactive Work into a Script
4.4 Finding Things in Files
4.5 Finding Files
4.6 Configuring the Shell
4.7 Summary
4.8 Exercises .
4.9 Key Points
Building Command-Line Tools with Python
5.1 Programs and Modules
5.2 Handling Command-Line Options
5.3 Documentation
5.4 Counting Words
5.5 Pipelining
5.6 Positional and Optional Arguments
5.7 Collating Results
5.8 Writing Our Own Modules
5.9 Plotting
5.10 Summary
5.11 Exercises
5.12 Key Points
Using Git at the Command Line
6.1 Setting Up
6.2 Creating a New Repository
6.3 Adding Existing Work
6.4 Describing Commits
6.5 Saving and Tracking Changes
6.6 Synchronizing with Other Repositories
6.7 Exploring History
6.8 Restoring Old Versions of Files
6.9 Ignoring Files
6.10 Summary
6.11 Exercises
6.12 Key Points
Going Further with Git
7.1 What's a Branch?
7.2 Creating a Branch
7.3 What Curve Should We Fit?
7.4 Verifying Zipf's Law
7.5 Merging
7.6 Handling Conflicts
7.7 A Branch-Based Workflow
7.8 Using Other People's Work
7.9 Pull Requests
7.10 Handling Conflicts in Pull Requests
7.11 Summary
7.12 Exercises
7.13 Key Points
Working in Teams
8.1 What is a Project?
8.2 Include Everyone
8.3 Establish a Code of Conduct
8.4 Include a License
8.5 Planning
8.6 Bug Reports
8.7 Labeling Issues
8.8 Prioritizing
8.9 Meetings
8.10 Making Decisions
8.11 Make All This Obvious to Newcomers
8.12 Handling Conflict
8.13 Summary
8.14 Exercises
8.15 Key Points
Automating Analyses with Make
9.1 Updating a Single File
9.2 Managing Multiple Files
9.3 Updating Files When Programs Change
9.4 Reducing Repetition in a Makefile
9.5 Automatic Variables
9.6 Generic Rules
9.7 Defining Sets of Files
9.8 Documenting a Makefile
9.9 Automating Entire Analyses
9.10 Summary
9.11 Exercises
9.12 Key Points
Configuring Programs
10.1 Configuration File Formats
10.2 Matplotlib Configuration
10.3 The Global Configuration File
10.4 The User Configuration File
10.5 Adding Command-Line Options
10.6 A Job Control File
10.7 Summary
10.8 Exercises
10.9 Key Points
Testing Software
11.1 Assertions
11.2 Unit Testing
11.3 Testing Frameworks
11.4 Testing Floating-Point Values
11.5 Integration Testing
11.6 Regression Testing
11.7 Test Coverage
11.8 Continuous Integration
11.9 When to Write Tests
11.10 Summary
11.11 Exercises
11.12 Key Points
Handling Errors
12.1 Exceptions
12.2 Writing Useful Error Messages
12.3 Testing Error Handling
12.4 Reporting Errors
12.5 Summary
12.6 Exercises
12.7 Key Points
Tracking Provenance
13.1 Data Provenance
13.2 Code Provenance
13.3 Summary
13.4 Exercises
13.5 Key Points
Creating Packages with Python
14.1 Creating a Python Package
14.2 Virtual Environments
14.3 Installing a Development Package
14.4 What Installation Does
14.5 Distributing Packages
14.6 Documenting Packages
14.7 Software Journals
14.8 Summary
14.9 Exercises
14.10 Key Points
Finale
15.1 Why We Wrote This Book
Appendix
A Solutions
B Learning Objectives
C Key Points
D Project Tree
E Working Remotely
F Writing Readable Code
G Documenting Programs
H YAML
I Anaconda
J Glossary
K References
Index
Welcome
0.1The Big Picture
0.2 Intended Audience
0.3 What You Will Learn
0.4 Using this Book
0.5 Contributing and Re-Use
0.6 Acknowledgments
Getting Started
1.1 Project Structure
1.2 Downloading the Data
1.3 Installing the Software
1.4 Summary
1.5 Exercises
1.6 Key Points
The Basics of the Unix Shell
2.1 Exploring Files and Directories
2.2 Moving Around
2.3 Creating New Files and Directories
2.4 Moving Files and Directories
2.5 Copying Files and Directories
2.6 Deleting Files and Directories
2.7 Wildcards
2.8 Reading the Manual
2.9 Summary
2.10 Exercises
2.11 Key Points
Building Tools with the Unix Shell
3.1 Combining Commands
3.2 How Pipes Work
3.3 Repeating Commands on Many Files
3.4 Variable Names
3.5 Redoing Things
3.6 Creating New Filenames Automatically
3.7 Summary
3.8 Exercises
3.9 Key Points
Going Further with the Unix Shell
4.1 Creating New Commands
4.2 Making Scripts More Versatile
4.3 Turning Interactive Work into a Script
4.4 Finding Things in Files
4.5 Finding Files
4.6 Configuring the Shell
4.7 Summary
4.8 Exercises .
4.9 Key Points
Building Command-Line Tools with Python
5.1 Programs and Modules
5.2 Handling Command-Line Options
5.3 Documentation
5.4 Counting Words
5.5 Pipelining
5.6 Positional and Optional Arguments
5.7 Collating Results
5.8 Writing Our Own Modules
5.9 Plotting
5.10 Summary
5.11 Exercises
5.12 Key Points
Using Git at the Command Line
6.1 Setting Up
6.2 Creating a New Repository
6.3 Adding Existing Work
6.4 Describing Commits
6.5 Saving and Tracking Changes
6.6 Synchronizing with Other Repositories
6.7 Exploring History
6.8 Restoring Old Versions of Files
6.9 Ignoring Files
6.10 Summary
6.11 Exercises
6.12 Key Points
Going Further with Git
7.1 What's a Branch?
7.2 Creating a Branch
7.3 What Curve Should We Fit?
7.4 Verifying Zipf's Law
7.5 Merging
7.6 Handling Conflicts
7.7 A Branch-Based Workflow
7.8 Using Other People's Work
7.9 Pull Requests
7.10 Handling Conflicts in Pull Requests
7.11 Summary
7.12 Exercises
7.13 Key Points
Working in Teams
8.1 What is a Project?
8.2 Include Everyone
8.3 Establish a Code of Conduct
8.4 Include a License
8.5 Planning
8.6 Bug Reports
8.7 Labeling Issues
8.8 Prioritizing
8.9 Meetings
8.10 Making Decisions
8.11 Make All This Obvious to Newcomers
8.12 Handling Conflict
8.13 Summary
8.14 Exercises
8.15 Key Points
Automating Analyses with Make
9.1 Updating a Single File
9.2 Managing Multiple Files
9.3 Updating Files When Programs Change
9.4 Reducing Repetition in a Makefile
9.5 Automatic Variables
9.6 Generic Rules
9.7 Defining Sets of Files
9.8 Documenting a Makefile
9.9 Automating Entire Analyses
9.10 Summary
9.11 Exercises
9.12 Key Points
Configuring Programs
10.1 Configuration File Formats
10.2 Matplotlib Configuration
10.3 The Global Configuration File
10.4 The User Configuration File
10.5 Adding Command-Line Options
10.6 A Job Control File
10.7 Summary
10.8 Exercises
10.9 Key Points
Testing Software
11.1 Assertions
11.2 Unit Testing
11.3 Testing Frameworks
11.4 Testing Floating-Point Values
11.5 Integration Testing
11.6 Regression Testing
11.7 Test Coverage
11.8 Continuous Integration
11.9 When to Write Tests
11.10 Summary
11.11 Exercises
11.12 Key Points
Handling Errors
12.1 Exceptions
12.2 Writing Useful Error Messages
12.3 Testing Error Handling
12.4 Reporting Errors
12.5 Summary
12.6 Exercises
12.7 Key Points
Tracking Provenance
13.1 Data Provenance
13.2 Code Provenance
13.3 Summary
13.4 Exercises
13.5 Key Points
Creating Packages with Python
14.1 Creating a Python Package
14.2 Virtual Environments
14.3 Installing a Development Package
14.4 What Installation Does
14.5 Distributing Packages
14.6 Documenting Packages
14.7 Software Journals
14.8 Summary
14.9 Exercises
14.10 Key Points
Finale
15.1 Why We Wrote This Book
Appendix
A Solutions
B Learning Objectives
C Key Points
D Project Tree
E Working Remotely
F Writing Readable Code
G Documenting Programs
H YAML
I Anaconda
J Glossary
K References
Index
0.1The Big Picture
0.2 Intended Audience
0.3 What You Will Learn
0.4 Using this Book
0.5 Contributing and Re-Use
0.6 Acknowledgments
Getting Started
1.1 Project Structure
1.2 Downloading the Data
1.3 Installing the Software
1.4 Summary
1.5 Exercises
1.6 Key Points
The Basics of the Unix Shell
2.1 Exploring Files and Directories
2.2 Moving Around
2.3 Creating New Files and Directories
2.4 Moving Files and Directories
2.5 Copying Files and Directories
2.6 Deleting Files and Directories
2.7 Wildcards
2.8 Reading the Manual
2.9 Summary
2.10 Exercises
2.11 Key Points
Building Tools with the Unix Shell
3.1 Combining Commands
3.2 How Pipes Work
3.3 Repeating Commands on Many Files
3.4 Variable Names
3.5 Redoing Things
3.6 Creating New Filenames Automatically
3.7 Summary
3.8 Exercises
3.9 Key Points
Going Further with the Unix Shell
4.1 Creating New Commands
4.2 Making Scripts More Versatile
4.3 Turning Interactive Work into a Script
4.4 Finding Things in Files
4.5 Finding Files
4.6 Configuring the Shell
4.7 Summary
4.8 Exercises .
4.9 Key Points
Building Command-Line Tools with Python
5.1 Programs and Modules
5.2 Handling Command-Line Options
5.3 Documentation
5.4 Counting Words
5.5 Pipelining
5.6 Positional and Optional Arguments
5.7 Collating Results
5.8 Writing Our Own Modules
5.9 Plotting
5.10 Summary
5.11 Exercises
5.12 Key Points
Using Git at the Command Line
6.1 Setting Up
6.2 Creating a New Repository
6.3 Adding Existing Work
6.4 Describing Commits
6.5 Saving and Tracking Changes
6.6 Synchronizing with Other Repositories
6.7 Exploring History
6.8 Restoring Old Versions of Files
6.9 Ignoring Files
6.10 Summary
6.11 Exercises
6.12 Key Points
Going Further with Git
7.1 What's a Branch?
7.2 Creating a Branch
7.3 What Curve Should We Fit?
7.4 Verifying Zipf's Law
7.5 Merging
7.6 Handling Conflicts
7.7 A Branch-Based Workflow
7.8 Using Other People's Work
7.9 Pull Requests
7.10 Handling Conflicts in Pull Requests
7.11 Summary
7.12 Exercises
7.13 Key Points
Working in Teams
8.1 What is a Project?
8.2 Include Everyone
8.3 Establish a Code of Conduct
8.4 Include a License
8.5 Planning
8.6 Bug Reports
8.7 Labeling Issues
8.8 Prioritizing
8.9 Meetings
8.10 Making Decisions
8.11 Make All This Obvious to Newcomers
8.12 Handling Conflict
8.13 Summary
8.14 Exercises
8.15 Key Points
Automating Analyses with Make
9.1 Updating a Single File
9.2 Managing Multiple Files
9.3 Updating Files When Programs Change
9.4 Reducing Repetition in a Makefile
9.5 Automatic Variables
9.6 Generic Rules
9.7 Defining Sets of Files
9.8 Documenting a Makefile
9.9 Automating Entire Analyses
9.10 Summary
9.11 Exercises
9.12 Key Points
Configuring Programs
10.1 Configuration File Formats
10.2 Matplotlib Configuration
10.3 The Global Configuration File
10.4 The User Configuration File
10.5 Adding Command-Line Options
10.6 A Job Control File
10.7 Summary
10.8 Exercises
10.9 Key Points
Testing Software
11.1 Assertions
11.2 Unit Testing
11.3 Testing Frameworks
11.4 Testing Floating-Point Values
11.5 Integration Testing
11.6 Regression Testing
11.7 Test Coverage
11.8 Continuous Integration
11.9 When to Write Tests
11.10 Summary
11.11 Exercises
11.12 Key Points
Handling Errors
12.1 Exceptions
12.2 Writing Useful Error Messages
12.3 Testing Error Handling
12.4 Reporting Errors
12.5 Summary
12.6 Exercises
12.7 Key Points
Tracking Provenance
13.1 Data Provenance
13.2 Code Provenance
13.3 Summary
13.4 Exercises
13.5 Key Points
Creating Packages with Python
14.1 Creating a Python Package
14.2 Virtual Environments
14.3 Installing a Development Package
14.4 What Installation Does
14.5 Distributing Packages
14.6 Documenting Packages
14.7 Software Journals
14.8 Summary
14.9 Exercises
14.10 Key Points
Finale
15.1 Why We Wrote This Book
Appendix
A Solutions
B Learning Objectives
C Key Points
D Project Tree
E Working Remotely
F Writing Readable Code
G Documenting Programs
H YAML
I Anaconda
J Glossary
K References
Index