52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Starting with sludge and scum characterization, this practical guide provides least cost methods of improving sludge quality, options for beneficial reuse, the costs of implementing those options, and case studies of sludge reuse programs around the country.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.96MB
Starting with sludge and scum characterization, this practical guide provides least cost methods of improving sludge quality, options for beneficial reuse, the costs of implementing those options, and case studies of sludge reuse programs around the country.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 192
- Erscheinungstermin: 24. Juli 2020
- Englisch
- ISBN-13: 9781000115079
- Artikelnr.: 59891881
- Verlag: Taylor & Francis
- Seitenzahl: 192
- Erscheinungstermin: 24. Juli 2020
- Englisch
- ISBN-13: 9781000115079
- Artikelnr.: 59891881
Alice B. Out water has a B.S. in Mechanical Engineering from the University of Vermont (1983) and an M.S. in Technology and Policy from Massachusetts Institute of Technology ( 1987).She worked in residuals management for the Massachusetts Water Resources Authority, which managed the largest wastewater engineering project of the decade: the $6 billion Boston Harbor Clean-Up. As an engineer specializing in minor residuals and innovative technologies for sludge reuse, Ms. Out water was part of the team that planned and implemented the program that shifted 200 dry tons of sludge a day from ocean disposal to beneficial reuse. She has written numerous technical papers on sludge and scum reuse. This book is a practical handbook for the reuse of sludge and minor residuals.
1. Introduction
1. 1. Sludge Production in the United States
1.2. Benefits of Reusing Sewage Sludge
1.3. Constraints for Sewage Sludge Reuse
1.3.1. Improving Sludge Quality
1 .4. A Guide to Sludge Reuse Program
2. Sludge
2.1. Sludge Characterization
2.1.1. Physical Composition
2.1.2. Chemical Composition
2.2. Sludge Production
2.3. Sludge Sampling
2.3.1. Digester Stratification
2.3.2. Industrial Contributions
2.3.3. Laboratory Error
2.4. Analytical Characterization of Sludge
2.4.1. Mass Balances of Contaminants
2.4.2. Theoretical Removal Rates of Contaminants
3. Improving Sludge Quality
3.1. Introduction
3.2. Calculating Influent Loadings
3.3. Quantifying Sources of Contaminants
3.3.1. WaterSupply
3 .3 .1.1. Lang lier Saturation Index
3.3.1.2. Aggressive Index
3.3.1.3. Reducing the Metals Attributable to the Water Supply
3.3.2. Industrial Contributions
3.3.2.1. Sewer Use Limitations
3.3.2.2. Industrial Loadings
3.3.3. Households
3.3.4. Run
Off
3.3.5. Leachate from Landfills and Hazardous Waste Sites
3.4. Case Study
Sources of Petroleum Hydrocarbons
3.4.1. Calculate Influent Loadings of Petroleum Hydrocarbons
3.4.2. Quantify the Sources of Petroleum Hydrocarbons
4. Minor Residuals
4.1. Introduction
4.2. Scum Characterization
4.2.1. Physical Composition
4.2.2. Chemical Composition
4.2.3. Flotables
4.2.3.1. Quantifying the Problem
4.2.3.2. Plastics Reduction
4.3. Scum Production
4.3.1. Scum Collection
4.4. Coprocessing Sludge and Scum
4.4.1. Anaerobic Digestion and Gas Formation
4.4.2. Digester Mixing
4.4.3. Grinding
4.4.4. Screening
4.5. Separate Processing of Sludge and Scum
4.5.1. Incineration
4.5.2. Chemical Fixation
5. Designing a Sludge Recycling Program
5.1. Introduction
5.2. Factors Affecting Sludge Reuse
5.2.1. Economic Factors
5.2.2. Geographic Factors
5.2.3. Environmental Factors
5.2.4. Reliability
5.2.5. Other Factors
5.3. Siting Sludge Processing Facilities
5.3. l. Site Selection Criteria
5.3.2. The Environmental Impact Statement Process
5.3.3. Siting Pitfalls
5.3.4. Compensation
5.4. Sludge Products
5 .5. Sludge Markets
5.6. Costing Sludge Processing Facilities
6.Land Application of Liquid Sludge
6.1. Introduction
6.2. Agricultural Application
6.2.1. Effects of Sludge on Cropland
6.2.1.1. Soil pH
6.2.2. Research on Crop Response
6.2.3. Liquid Application in Southwestern Ohio
6.3. Forest Application
6.3.1. Effects of Sludge on Forestland
6.3.2. Research on Tree Response
6.3.3. Forest Application in Seattle, Washington
7. Sludge Dewatering
7 .1. Introduction
7 .2. Natural De watering Methods
7.2.1. Sand Beds
7 .2.2. Wedge water Filter Beds
7.2.3. Lagoon Dewatering
7.3. Innovative Methods of Natural Dewatering
7.3.1. Sludge Freezing for Dewatering
7 .3 .2. Phragmites Reed Beds
7.4. Mechanical De watering
7.4.1. Vacuum Filter Dewatering
7.4.2. Belt Filter Presses
7.4.3. Centrifuge Dewatering
7.4.3.1. Comparing Belt Filter Presses and Centrifuges
7.4.3.2. Costs of Centrifuges and Belt Filter Presses
7.5. Sludge Cake Application
7.5.1. Omaha, Nebraska
8. Lime
Stabilized Sludge
8.1. Introduction
8.2. Lime Stabilization Chemistry
8.3. Lime Stabilization Processes
8.3.1. Sludge Feed Equipment for Lime Stabilization
8.3.2. Lime Storage and Feed Equipment
8.3.3. Lime /Sludge Mixing Equipment
8.4. Variations on Lime Stabilization
8.4.1. Lime Pasteurization
8.4.2. Chemical Fixation of Sludge
8.5. Lime
Stabilized Sludge Application
8.5.1. Oklahoma City, Oklahoma
9. Sludge Composting
9.1. Introduction
9.2. Composting Processes
9.2.1. Aerated Static Pile Composting
9.2.2. Vermicomposting
9.2.3. Windrow Composting
9.2.4. Aerated Windrow Composting
9.2.5. In
Vessel Composting
9.3. Odor Control
9.3.1. Malodorous Compounds
9.3.2. Odor Control by Process Optimization
9.3.3. Amendment Choice
9.3.4. Exhaust Air Odor Control
9.4. Markets for Composted Sludge
9.4.1. Akron, Ohio
10. Sludge Pelletizing
10.1. Introduction
10.2. Pelletizing Process
10.3. Pelletizing Costs
10.3.1. Pelletizing in Clayton County, Georgia
10.4. Markets for Pelletized Sludge
11. Innovative Technologies for Sludge Reuse
11.1. Introduction
11.2. Sludge to Oil
STORS
11.2.1. Process
11.2.2. Costs
11.3. Oil from Sludge
11.3.1. Process
11.3.2. Fate of Contaminants
11.3.3. Costs
11.4. Sludge to Energy
Hyperion Energy Recovery System
11.4.1. Process
11.4.2. Costs
11.5. Sludge Bricks and Tiles
11.5.1. Process
11.5.2. Costs
12. Regulatory Limitations
12.1. General Issues
12.1.1. Permitting
12.1.2. Monitoring
12.2. The Part 503 Regulations
12.2.1. Numerical Limits for Contaminants
12.2.2. "Exceptional Quality" Sludge
12.2.3. Pathogen Reduction Requirements
12.2.3.1. Class A Sewage Sludge
12.2.3.2. Class B Sewage Sludge
12.2.4. Vector Attraction Reduction Requirements
12.2.5. Management Practices for Land Application
12.3. Research on the Fate of Heavy Metals
12.3.1. Cadmium
12.3.2. Lead
12.3.3. Mercury
12.3.4. Chromium
12.3.5. Copper, Nickel, and Zinc
Index.
1. 1. Sludge Production in the United States
1.2. Benefits of Reusing Sewage Sludge
1.3. Constraints for Sewage Sludge Reuse
1.3.1. Improving Sludge Quality
1 .4. A Guide to Sludge Reuse Program
2. Sludge
2.1. Sludge Characterization
2.1.1. Physical Composition
2.1.2. Chemical Composition
2.2. Sludge Production
2.3. Sludge Sampling
2.3.1. Digester Stratification
2.3.2. Industrial Contributions
2.3.3. Laboratory Error
2.4. Analytical Characterization of Sludge
2.4.1. Mass Balances of Contaminants
2.4.2. Theoretical Removal Rates of Contaminants
3. Improving Sludge Quality
3.1. Introduction
3.2. Calculating Influent Loadings
3.3. Quantifying Sources of Contaminants
3.3.1. WaterSupply
3 .3 .1.1. Lang lier Saturation Index
3.3.1.2. Aggressive Index
3.3.1.3. Reducing the Metals Attributable to the Water Supply
3.3.2. Industrial Contributions
3.3.2.1. Sewer Use Limitations
3.3.2.2. Industrial Loadings
3.3.3. Households
3.3.4. Run
Off
3.3.5. Leachate from Landfills and Hazardous Waste Sites
3.4. Case Study
Sources of Petroleum Hydrocarbons
3.4.1. Calculate Influent Loadings of Petroleum Hydrocarbons
3.4.2. Quantify the Sources of Petroleum Hydrocarbons
4. Minor Residuals
4.1. Introduction
4.2. Scum Characterization
4.2.1. Physical Composition
4.2.2. Chemical Composition
4.2.3. Flotables
4.2.3.1. Quantifying the Problem
4.2.3.2. Plastics Reduction
4.3. Scum Production
4.3.1. Scum Collection
4.4. Coprocessing Sludge and Scum
4.4.1. Anaerobic Digestion and Gas Formation
4.4.2. Digester Mixing
4.4.3. Grinding
4.4.4. Screening
4.5. Separate Processing of Sludge and Scum
4.5.1. Incineration
4.5.2. Chemical Fixation
5. Designing a Sludge Recycling Program
5.1. Introduction
5.2. Factors Affecting Sludge Reuse
5.2.1. Economic Factors
5.2.2. Geographic Factors
5.2.3. Environmental Factors
5.2.4. Reliability
5.2.5. Other Factors
5.3. Siting Sludge Processing Facilities
5.3. l. Site Selection Criteria
5.3.2. The Environmental Impact Statement Process
5.3.3. Siting Pitfalls
5.3.4. Compensation
5.4. Sludge Products
5 .5. Sludge Markets
5.6. Costing Sludge Processing Facilities
6.Land Application of Liquid Sludge
6.1. Introduction
6.2. Agricultural Application
6.2.1. Effects of Sludge on Cropland
6.2.1.1. Soil pH
6.2.2. Research on Crop Response
6.2.3. Liquid Application in Southwestern Ohio
6.3. Forest Application
6.3.1. Effects of Sludge on Forestland
6.3.2. Research on Tree Response
6.3.3. Forest Application in Seattle, Washington
7. Sludge Dewatering
7 .1. Introduction
7 .2. Natural De watering Methods
7.2.1. Sand Beds
7 .2.2. Wedge water Filter Beds
7.2.3. Lagoon Dewatering
7.3. Innovative Methods of Natural Dewatering
7.3.1. Sludge Freezing for Dewatering
7 .3 .2. Phragmites Reed Beds
7.4. Mechanical De watering
7.4.1. Vacuum Filter Dewatering
7.4.2. Belt Filter Presses
7.4.3. Centrifuge Dewatering
7.4.3.1. Comparing Belt Filter Presses and Centrifuges
7.4.3.2. Costs of Centrifuges and Belt Filter Presses
7.5. Sludge Cake Application
7.5.1. Omaha, Nebraska
8. Lime
Stabilized Sludge
8.1. Introduction
8.2. Lime Stabilization Chemistry
8.3. Lime Stabilization Processes
8.3.1. Sludge Feed Equipment for Lime Stabilization
8.3.2. Lime Storage and Feed Equipment
8.3.3. Lime /Sludge Mixing Equipment
8.4. Variations on Lime Stabilization
8.4.1. Lime Pasteurization
8.4.2. Chemical Fixation of Sludge
8.5. Lime
Stabilized Sludge Application
8.5.1. Oklahoma City, Oklahoma
9. Sludge Composting
9.1. Introduction
9.2. Composting Processes
9.2.1. Aerated Static Pile Composting
9.2.2. Vermicomposting
9.2.3. Windrow Composting
9.2.4. Aerated Windrow Composting
9.2.5. In
Vessel Composting
9.3. Odor Control
9.3.1. Malodorous Compounds
9.3.2. Odor Control by Process Optimization
9.3.3. Amendment Choice
9.3.4. Exhaust Air Odor Control
9.4. Markets for Composted Sludge
9.4.1. Akron, Ohio
10. Sludge Pelletizing
10.1. Introduction
10.2. Pelletizing Process
10.3. Pelletizing Costs
10.3.1. Pelletizing in Clayton County, Georgia
10.4. Markets for Pelletized Sludge
11. Innovative Technologies for Sludge Reuse
11.1. Introduction
11.2. Sludge to Oil
STORS
11.2.1. Process
11.2.2. Costs
11.3. Oil from Sludge
11.3.1. Process
11.3.2. Fate of Contaminants
11.3.3. Costs
11.4. Sludge to Energy
Hyperion Energy Recovery System
11.4.1. Process
11.4.2. Costs
11.5. Sludge Bricks and Tiles
11.5.1. Process
11.5.2. Costs
12. Regulatory Limitations
12.1. General Issues
12.1.1. Permitting
12.1.2. Monitoring
12.2. The Part 503 Regulations
12.2.1. Numerical Limits for Contaminants
12.2.2. "Exceptional Quality" Sludge
12.2.3. Pathogen Reduction Requirements
12.2.3.1. Class A Sewage Sludge
12.2.3.2. Class B Sewage Sludge
12.2.4. Vector Attraction Reduction Requirements
12.2.5. Management Practices for Land Application
12.3. Research on the Fate of Heavy Metals
12.3.1. Cadmium
12.3.2. Lead
12.3.3. Mercury
12.3.4. Chromium
12.3.5. Copper, Nickel, and Zinc
Index.
1. Introduction
1. 1. Sludge Production in the United States
1.2. Benefits of Reusing Sewage Sludge
1.3. Constraints for Sewage Sludge Reuse
1.3.1. Improving Sludge Quality
1 .4. A Guide to Sludge Reuse Program
2. Sludge
2.1. Sludge Characterization
2.1.1. Physical Composition
2.1.2. Chemical Composition
2.2. Sludge Production
2.3. Sludge Sampling
2.3.1. Digester Stratification
2.3.2. Industrial Contributions
2.3.3. Laboratory Error
2.4. Analytical Characterization of Sludge
2.4.1. Mass Balances of Contaminants
2.4.2. Theoretical Removal Rates of Contaminants
3. Improving Sludge Quality
3.1. Introduction
3.2. Calculating Influent Loadings
3.3. Quantifying Sources of Contaminants
3.3.1. WaterSupply
3 .3 .1.1. Lang lier Saturation Index
3.3.1.2. Aggressive Index
3.3.1.3. Reducing the Metals Attributable to the Water Supply
3.3.2. Industrial Contributions
3.3.2.1. Sewer Use Limitations
3.3.2.2. Industrial Loadings
3.3.3. Households
3.3.4. Run
Off
3.3.5. Leachate from Landfills and Hazardous Waste Sites
3.4. Case Study
Sources of Petroleum Hydrocarbons
3.4.1. Calculate Influent Loadings of Petroleum Hydrocarbons
3.4.2. Quantify the Sources of Petroleum Hydrocarbons
4. Minor Residuals
4.1. Introduction
4.2. Scum Characterization
4.2.1. Physical Composition
4.2.2. Chemical Composition
4.2.3. Flotables
4.2.3.1. Quantifying the Problem
4.2.3.2. Plastics Reduction
4.3. Scum Production
4.3.1. Scum Collection
4.4. Coprocessing Sludge and Scum
4.4.1. Anaerobic Digestion and Gas Formation
4.4.2. Digester Mixing
4.4.3. Grinding
4.4.4. Screening
4.5. Separate Processing of Sludge and Scum
4.5.1. Incineration
4.5.2. Chemical Fixation
5. Designing a Sludge Recycling Program
5.1. Introduction
5.2. Factors Affecting Sludge Reuse
5.2.1. Economic Factors
5.2.2. Geographic Factors
5.2.3. Environmental Factors
5.2.4. Reliability
5.2.5. Other Factors
5.3. Siting Sludge Processing Facilities
5.3. l. Site Selection Criteria
5.3.2. The Environmental Impact Statement Process
5.3.3. Siting Pitfalls
5.3.4. Compensation
5.4. Sludge Products
5 .5. Sludge Markets
5.6. Costing Sludge Processing Facilities
6.Land Application of Liquid Sludge
6.1. Introduction
6.2. Agricultural Application
6.2.1. Effects of Sludge on Cropland
6.2.1.1. Soil pH
6.2.2. Research on Crop Response
6.2.3. Liquid Application in Southwestern Ohio
6.3. Forest Application
6.3.1. Effects of Sludge on Forestland
6.3.2. Research on Tree Response
6.3.3. Forest Application in Seattle, Washington
7. Sludge Dewatering
7 .1. Introduction
7 .2. Natural De watering Methods
7.2.1. Sand Beds
7 .2.2. Wedge water Filter Beds
7.2.3. Lagoon Dewatering
7.3. Innovative Methods of Natural Dewatering
7.3.1. Sludge Freezing for Dewatering
7 .3 .2. Phragmites Reed Beds
7.4. Mechanical De watering
7.4.1. Vacuum Filter Dewatering
7.4.2. Belt Filter Presses
7.4.3. Centrifuge Dewatering
7.4.3.1. Comparing Belt Filter Presses and Centrifuges
7.4.3.2. Costs of Centrifuges and Belt Filter Presses
7.5. Sludge Cake Application
7.5.1. Omaha, Nebraska
8. Lime
Stabilized Sludge
8.1. Introduction
8.2. Lime Stabilization Chemistry
8.3. Lime Stabilization Processes
8.3.1. Sludge Feed Equipment for Lime Stabilization
8.3.2. Lime Storage and Feed Equipment
8.3.3. Lime /Sludge Mixing Equipment
8.4. Variations on Lime Stabilization
8.4.1. Lime Pasteurization
8.4.2. Chemical Fixation of Sludge
8.5. Lime
Stabilized Sludge Application
8.5.1. Oklahoma City, Oklahoma
9. Sludge Composting
9.1. Introduction
9.2. Composting Processes
9.2.1. Aerated Static Pile Composting
9.2.2. Vermicomposting
9.2.3. Windrow Composting
9.2.4. Aerated Windrow Composting
9.2.5. In
Vessel Composting
9.3. Odor Control
9.3.1. Malodorous Compounds
9.3.2. Odor Control by Process Optimization
9.3.3. Amendment Choice
9.3.4. Exhaust Air Odor Control
9.4. Markets for Composted Sludge
9.4.1. Akron, Ohio
10. Sludge Pelletizing
10.1. Introduction
10.2. Pelletizing Process
10.3. Pelletizing Costs
10.3.1. Pelletizing in Clayton County, Georgia
10.4. Markets for Pelletized Sludge
11. Innovative Technologies for Sludge Reuse
11.1. Introduction
11.2. Sludge to Oil
STORS
11.2.1. Process
11.2.2. Costs
11.3. Oil from Sludge
11.3.1. Process
11.3.2. Fate of Contaminants
11.3.3. Costs
11.4. Sludge to Energy
Hyperion Energy Recovery System
11.4.1. Process
11.4.2. Costs
11.5. Sludge Bricks and Tiles
11.5.1. Process
11.5.2. Costs
12. Regulatory Limitations
12.1. General Issues
12.1.1. Permitting
12.1.2. Monitoring
12.2. The Part 503 Regulations
12.2.1. Numerical Limits for Contaminants
12.2.2. "Exceptional Quality" Sludge
12.2.3. Pathogen Reduction Requirements
12.2.3.1. Class A Sewage Sludge
12.2.3.2. Class B Sewage Sludge
12.2.4. Vector Attraction Reduction Requirements
12.2.5. Management Practices for Land Application
12.3. Research on the Fate of Heavy Metals
12.3.1. Cadmium
12.3.2. Lead
12.3.3. Mercury
12.3.4. Chromium
12.3.5. Copper, Nickel, and Zinc
Index.
1. 1. Sludge Production in the United States
1.2. Benefits of Reusing Sewage Sludge
1.3. Constraints for Sewage Sludge Reuse
1.3.1. Improving Sludge Quality
1 .4. A Guide to Sludge Reuse Program
2. Sludge
2.1. Sludge Characterization
2.1.1. Physical Composition
2.1.2. Chemical Composition
2.2. Sludge Production
2.3. Sludge Sampling
2.3.1. Digester Stratification
2.3.2. Industrial Contributions
2.3.3. Laboratory Error
2.4. Analytical Characterization of Sludge
2.4.1. Mass Balances of Contaminants
2.4.2. Theoretical Removal Rates of Contaminants
3. Improving Sludge Quality
3.1. Introduction
3.2. Calculating Influent Loadings
3.3. Quantifying Sources of Contaminants
3.3.1. WaterSupply
3 .3 .1.1. Lang lier Saturation Index
3.3.1.2. Aggressive Index
3.3.1.3. Reducing the Metals Attributable to the Water Supply
3.3.2. Industrial Contributions
3.3.2.1. Sewer Use Limitations
3.3.2.2. Industrial Loadings
3.3.3. Households
3.3.4. Run
Off
3.3.5. Leachate from Landfills and Hazardous Waste Sites
3.4. Case Study
Sources of Petroleum Hydrocarbons
3.4.1. Calculate Influent Loadings of Petroleum Hydrocarbons
3.4.2. Quantify the Sources of Petroleum Hydrocarbons
4. Minor Residuals
4.1. Introduction
4.2. Scum Characterization
4.2.1. Physical Composition
4.2.2. Chemical Composition
4.2.3. Flotables
4.2.3.1. Quantifying the Problem
4.2.3.2. Plastics Reduction
4.3. Scum Production
4.3.1. Scum Collection
4.4. Coprocessing Sludge and Scum
4.4.1. Anaerobic Digestion and Gas Formation
4.4.2. Digester Mixing
4.4.3. Grinding
4.4.4. Screening
4.5. Separate Processing of Sludge and Scum
4.5.1. Incineration
4.5.2. Chemical Fixation
5. Designing a Sludge Recycling Program
5.1. Introduction
5.2. Factors Affecting Sludge Reuse
5.2.1. Economic Factors
5.2.2. Geographic Factors
5.2.3. Environmental Factors
5.2.4. Reliability
5.2.5. Other Factors
5.3. Siting Sludge Processing Facilities
5.3. l. Site Selection Criteria
5.3.2. The Environmental Impact Statement Process
5.3.3. Siting Pitfalls
5.3.4. Compensation
5.4. Sludge Products
5 .5. Sludge Markets
5.6. Costing Sludge Processing Facilities
6.Land Application of Liquid Sludge
6.1. Introduction
6.2. Agricultural Application
6.2.1. Effects of Sludge on Cropland
6.2.1.1. Soil pH
6.2.2. Research on Crop Response
6.2.3. Liquid Application in Southwestern Ohio
6.3. Forest Application
6.3.1. Effects of Sludge on Forestland
6.3.2. Research on Tree Response
6.3.3. Forest Application in Seattle, Washington
7. Sludge Dewatering
7 .1. Introduction
7 .2. Natural De watering Methods
7.2.1. Sand Beds
7 .2.2. Wedge water Filter Beds
7.2.3. Lagoon Dewatering
7.3. Innovative Methods of Natural Dewatering
7.3.1. Sludge Freezing for Dewatering
7 .3 .2. Phragmites Reed Beds
7.4. Mechanical De watering
7.4.1. Vacuum Filter Dewatering
7.4.2. Belt Filter Presses
7.4.3. Centrifuge Dewatering
7.4.3.1. Comparing Belt Filter Presses and Centrifuges
7.4.3.2. Costs of Centrifuges and Belt Filter Presses
7.5. Sludge Cake Application
7.5.1. Omaha, Nebraska
8. Lime
Stabilized Sludge
8.1. Introduction
8.2. Lime Stabilization Chemistry
8.3. Lime Stabilization Processes
8.3.1. Sludge Feed Equipment for Lime Stabilization
8.3.2. Lime Storage and Feed Equipment
8.3.3. Lime /Sludge Mixing Equipment
8.4. Variations on Lime Stabilization
8.4.1. Lime Pasteurization
8.4.2. Chemical Fixation of Sludge
8.5. Lime
Stabilized Sludge Application
8.5.1. Oklahoma City, Oklahoma
9. Sludge Composting
9.1. Introduction
9.2. Composting Processes
9.2.1. Aerated Static Pile Composting
9.2.2. Vermicomposting
9.2.3. Windrow Composting
9.2.4. Aerated Windrow Composting
9.2.5. In
Vessel Composting
9.3. Odor Control
9.3.1. Malodorous Compounds
9.3.2. Odor Control by Process Optimization
9.3.3. Amendment Choice
9.3.4. Exhaust Air Odor Control
9.4. Markets for Composted Sludge
9.4.1. Akron, Ohio
10. Sludge Pelletizing
10.1. Introduction
10.2. Pelletizing Process
10.3. Pelletizing Costs
10.3.1. Pelletizing in Clayton County, Georgia
10.4. Markets for Pelletized Sludge
11. Innovative Technologies for Sludge Reuse
11.1. Introduction
11.2. Sludge to Oil
STORS
11.2.1. Process
11.2.2. Costs
11.3. Oil from Sludge
11.3.1. Process
11.3.2. Fate of Contaminants
11.3.3. Costs
11.4. Sludge to Energy
Hyperion Energy Recovery System
11.4.1. Process
11.4.2. Costs
11.5. Sludge Bricks and Tiles
11.5.1. Process
11.5.2. Costs
12. Regulatory Limitations
12.1. General Issues
12.1.1. Permitting
12.1.2. Monitoring
12.2. The Part 503 Regulations
12.2.1. Numerical Limits for Contaminants
12.2.2. "Exceptional Quality" Sludge
12.2.3. Pathogen Reduction Requirements
12.2.3.1. Class A Sewage Sludge
12.2.3.2. Class B Sewage Sludge
12.2.4. Vector Attraction Reduction Requirements
12.2.5. Management Practices for Land Application
12.3. Research on the Fate of Heavy Metals
12.3.1. Cadmium
12.3.2. Lead
12.3.3. Mercury
12.3.4. Chromium
12.3.5. Copper, Nickel, and Zinc
Index.