47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions. Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 1.83MB
Andere Kunden interessierten sich auch für
- J W GoodwinRheology for Chemists (eBook, PDF)38,95 €
- J W GoodwinRheology for Chemists (eBook, ePUB)46,95 €
- Chemical Kinetics and Mechanism (eBook, PDF)29,95 €
- Powder Diffraction (eBook, PDF)85,95 €
- Anthony E HargreavesChemical Formulation (eBook, PDF)29,95 €
- Andrew WilliamsFree Energy Relationships in Organic and Bio-Organic Chemistry (eBook, PDF)53,95 €
- Felix FranksWater (eBook, PDF)23,95 €
-
-
-
Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions. Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which increases in complexity with each discrete chapter. Ideas are developed in a systematic fashion so that the mechanisms responsible for the elastic, viscous or viscoelastic behaviour of systems are understood. The text thus progresses in a manner that makes it an ideal introduction to rheology for any scientist who needs to use the ideas to modify systems. Comprehensive and unique in approach, this book will provide the necessary introduction to rheology for many undergraduates and graduates, as well as being valuable for laboratory and industrial staff requiring an introduction to this fascinating subject.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Royal Society of Chemistry
- Seitenzahl: 276
- Erscheinungstermin: 22. Januar 2008
- Englisch
- ISBN-13: 9781847558046
- Artikelnr.: 44768158
- Verlag: Royal Society of Chemistry
- Seitenzahl: 276
- Erscheinungstermin: 22. Januar 2008
- Englisch
- ISBN-13: 9781847558046
- Artikelnr.: 44768158
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Contents: Chapter 1: Introduction
1.1 Definitions
1.1.1 Stress and Strain
1.1.2 Rate of Strain and Flow
1.2 Simple Constitutive Equations
1.2.1 Linear and Non-linear Behaviour
1.2.2 Using Constitutive Equations
1.3 Dimensionless Groups
1.3.1 The Deborah Number
1.3.2 The PÚclet Number
1.3.3 The Reduced Stress
1.3.4 The Taylor Number, NTa
1.3.5 The Reynolds Number, NRe
1.4 Macromolecular and Colloidal Systems
1.5 References
Chapter 2: Elasticity: High Deborah Number Measurements
2.1 Introduction
2.2 The Liquid-Solid Transition
2.2.1 Bulk Elasticity
2.2.2 Wave Propagation
2.3 Crystalline Solids At Large Strains
2.3.1 Lattice Defects
2.4 Macromolecular Solids
2.4.1 Polymers - An Introduction
2.4.2 Chain Conformation
2.4.3 Polymer Crystallinity
2.4.4 Crosslinked Elastomers
2.4.5 Self-associating Polymers
2.4.6 Non-interactive Fillers
2.4.7 Interactive Fillers
2.4.8 Summary of Polymeric Systems
2.5 Colloidal Gels
2.5.1 Interactions Between Colloidal Particles
2.5.2 London - van der Waals' Interactions
2.5.3 Depletion Interactions
2.5.4 Electrostatic Repulsion
2.5.5 Steric Repulsion
2.5.6 Electrosteric Interactions
2.6 References
Chapter 3: Viscosity: Low Deborah Number Measurements
3.1 Initial Considerations
3.2 Viscometric Measurement
3.2.1 The Cone and Plate
3.2.2 The Couette or Concentric Cylinder
3.3 The Molecular Origins on Viscosity
3.3.1 The Flow of Gases
3.3.2 The Flow of Liquids
3.3.3 Density and Phase Changes
3.3.4 Free Volume Model of Liquid Flow
3.3.5 Activation energy Models
3.4 Superfluids
3.5 Macromolecular Fluids
3.5.1 Colloidal Dispersions
3.5.2 Dilute Dispersions of Spheres
3.5.3 Concentrated Dispersions of Spheres
3.5.4 Shear Thickening Behaviour in Dense Suspensions
3.5.5 Charge Stabilised Dispersions
3.5.6 Dilute Polymer Solutions
3.5.7 Surfactant Solutions
3.6 References
Chapter 4: Linear Viscoelasticity I Phenomenological Approach
4.1 Viscoelasticity
4.2 Length and Timescales
4.3 Mechanical Spectroscopy
4.4 Linear Viscoelasticity
4.4.1 Mechanical Analogues
4.4.2 Relaxation Derived as an Analogue to 1 st Order Chemical Kinetics
4.4.1 Oscillation Response
4.4.2 Multiple Processes
4.4.3 A Spectral Approach To Linear Viscoelastic Theory
4.5 Linear Viscoelastic Experiments
4.4.1 Relaxation
4.4.2 Stress Growth
4.4.3 Antthixotropic Response
4.4.4 Creep and Recovery
4.4.5 Strain Oscillation
4.4.6 Stress Oscillation
4.6 Interrelationships Between the Measurements and the Spectra
4.6.1 The Relationship Between Compliance and Modulus
4.6.1 Retardation and Relaxation Spectrum
4.6.2 The Relaxation Function and the Storage and Loss Moduli
4.6.3 Creep and Relaxation Interrelations
4.7 Applications to the Models
4.8 Microstructural Influences on the Kernel
4.8.1 The Extended Exponential
4.8.2 Power law or the Gel Equation
4.8.3 Exact Inversions from the Relaxation or Retardation Spectrum
4.9 Non-shearing Fields and Extension
4.10 References
Chapter 5: Linear Viscoelasticity II. Microstructural Approach
5.1 Intermediate Deborah Numbers
5.2 Hard Spheres and Atomic Fluids
5.3 Quasi-hard Spheres
5.3.1 Quasi-hard Sphere Phase Diagrams
5.3.2 Quasi-hard Sphere Viscoelasticity and Viscosity
5.4 Weakly Attractive Systems
5.5 Charge Repulsion Systems
5.6 Simple Homopolymer systems
5.6.1 Phase Behaviour and the Chain Overlap in Good Solvents
5.6.2 Dilute Solution Polymers
5.6.3 Undiluted and Concentrated Non-entangled Polymers
5.6.4 Entanglement coupling
5.6.5 Reptation and Linear Viscoelasticity
5.7 Polymer Network Structure
5.7.1 The Formation of Gels
5.7.2 Chemical Networks
5.7.3 Physical Networks
5.8 References
Chapter 6: Non-Linear Responses
6.1 Introduction
6.2 The Phenomenological Approach
6.2.1 Flow Curve4s
Definitions and Equations
6.2.2 Time Dependence in Flow and The Boltzmann Superposition Principle
6.2.3 Yield Stress Sedimentation and Linearity
6.3 The Microstructural Approach - Particles
6.2.1 Flow in Hard Sphere Systems
6.2.2 The Addition of a Surface Layer
6.2.3 Aggregation and Dispersion in Shear
6.2.4 Weakly Flocculated Dispersions
6.2.5 Strongly Aggregated and Coagulated Systems
6.2.6 Long Range Repulsive Systems
6.2.7 Rod-like Particles
6.4 The Microstructural Approach - Polymers
6.4.1 The Role of Entanglements in Non-linear Viscoelasticity
6.4.2 Entanglements of Solution Homopolymers
6.4.3 The Reptation Approach
6.5 Novel Applications
6.5.1 Extension and Complex Flows
6.5.2 Uniaxial Compression Modulus
6.5.3 Deformable Particles
6.5 References
Subject Index
1.1 Definitions
1.1.1 Stress and Strain
1.1.2 Rate of Strain and Flow
1.2 Simple Constitutive Equations
1.2.1 Linear and Non-linear Behaviour
1.2.2 Using Constitutive Equations
1.3 Dimensionless Groups
1.3.1 The Deborah Number
1.3.2 The PÚclet Number
1.3.3 The Reduced Stress
1.3.4 The Taylor Number, NTa
1.3.5 The Reynolds Number, NRe
1.4 Macromolecular and Colloidal Systems
1.5 References
Chapter 2: Elasticity: High Deborah Number Measurements
2.1 Introduction
2.2 The Liquid-Solid Transition
2.2.1 Bulk Elasticity
2.2.2 Wave Propagation
2.3 Crystalline Solids At Large Strains
2.3.1 Lattice Defects
2.4 Macromolecular Solids
2.4.1 Polymers - An Introduction
2.4.2 Chain Conformation
2.4.3 Polymer Crystallinity
2.4.4 Crosslinked Elastomers
2.4.5 Self-associating Polymers
2.4.6 Non-interactive Fillers
2.4.7 Interactive Fillers
2.4.8 Summary of Polymeric Systems
2.5 Colloidal Gels
2.5.1 Interactions Between Colloidal Particles
2.5.2 London - van der Waals' Interactions
2.5.3 Depletion Interactions
2.5.4 Electrostatic Repulsion
2.5.5 Steric Repulsion
2.5.6 Electrosteric Interactions
2.6 References
Chapter 3: Viscosity: Low Deborah Number Measurements
3.1 Initial Considerations
3.2 Viscometric Measurement
3.2.1 The Cone and Plate
3.2.2 The Couette or Concentric Cylinder
3.3 The Molecular Origins on Viscosity
3.3.1 The Flow of Gases
3.3.2 The Flow of Liquids
3.3.3 Density and Phase Changes
3.3.4 Free Volume Model of Liquid Flow
3.3.5 Activation energy Models
3.4 Superfluids
3.5 Macromolecular Fluids
3.5.1 Colloidal Dispersions
3.5.2 Dilute Dispersions of Spheres
3.5.3 Concentrated Dispersions of Spheres
3.5.4 Shear Thickening Behaviour in Dense Suspensions
3.5.5 Charge Stabilised Dispersions
3.5.6 Dilute Polymer Solutions
3.5.7 Surfactant Solutions
3.6 References
Chapter 4: Linear Viscoelasticity I Phenomenological Approach
4.1 Viscoelasticity
4.2 Length and Timescales
4.3 Mechanical Spectroscopy
4.4 Linear Viscoelasticity
4.4.1 Mechanical Analogues
4.4.2 Relaxation Derived as an Analogue to 1 st Order Chemical Kinetics
4.4.1 Oscillation Response
4.4.2 Multiple Processes
4.4.3 A Spectral Approach To Linear Viscoelastic Theory
4.5 Linear Viscoelastic Experiments
4.4.1 Relaxation
4.4.2 Stress Growth
4.4.3 Antthixotropic Response
4.4.4 Creep and Recovery
4.4.5 Strain Oscillation
4.4.6 Stress Oscillation
4.6 Interrelationships Between the Measurements and the Spectra
4.6.1 The Relationship Between Compliance and Modulus
4.6.1 Retardation and Relaxation Spectrum
4.6.2 The Relaxation Function and the Storage and Loss Moduli
4.6.3 Creep and Relaxation Interrelations
4.7 Applications to the Models
4.8 Microstructural Influences on the Kernel
4.8.1 The Extended Exponential
4.8.2 Power law or the Gel Equation
4.8.3 Exact Inversions from the Relaxation or Retardation Spectrum
4.9 Non-shearing Fields and Extension
4.10 References
Chapter 5: Linear Viscoelasticity II. Microstructural Approach
5.1 Intermediate Deborah Numbers
5.2 Hard Spheres and Atomic Fluids
5.3 Quasi-hard Spheres
5.3.1 Quasi-hard Sphere Phase Diagrams
5.3.2 Quasi-hard Sphere Viscoelasticity and Viscosity
5.4 Weakly Attractive Systems
5.5 Charge Repulsion Systems
5.6 Simple Homopolymer systems
5.6.1 Phase Behaviour and the Chain Overlap in Good Solvents
5.6.2 Dilute Solution Polymers
5.6.3 Undiluted and Concentrated Non-entangled Polymers
5.6.4 Entanglement coupling
5.6.5 Reptation and Linear Viscoelasticity
5.7 Polymer Network Structure
5.7.1 The Formation of Gels
5.7.2 Chemical Networks
5.7.3 Physical Networks
5.8 References
Chapter 6: Non-Linear Responses
6.1 Introduction
6.2 The Phenomenological Approach
6.2.1 Flow Curve4s
Definitions and Equations
6.2.2 Time Dependence in Flow and The Boltzmann Superposition Principle
6.2.3 Yield Stress Sedimentation and Linearity
6.3 The Microstructural Approach - Particles
6.2.1 Flow in Hard Sphere Systems
6.2.2 The Addition of a Surface Layer
6.2.3 Aggregation and Dispersion in Shear
6.2.4 Weakly Flocculated Dispersions
6.2.5 Strongly Aggregated and Coagulated Systems
6.2.6 Long Range Repulsive Systems
6.2.7 Rod-like Particles
6.4 The Microstructural Approach - Polymers
6.4.1 The Role of Entanglements in Non-linear Viscoelasticity
6.4.2 Entanglements of Solution Homopolymers
6.4.3 The Reptation Approach
6.5 Novel Applications
6.5.1 Extension and Complex Flows
6.5.2 Uniaxial Compression Modulus
6.5.3 Deformable Particles
6.5 References
Subject Index
Contents: Chapter 1: Introduction
1.1 Definitions
1.1.1 Stress and Strain
1.1.2 Rate of Strain and Flow
1.2 Simple Constitutive Equations
1.2.1 Linear and Non-linear Behaviour
1.2.2 Using Constitutive Equations
1.3 Dimensionless Groups
1.3.1 The Deborah Number
1.3.2 The PÚclet Number
1.3.3 The Reduced Stress
1.3.4 The Taylor Number, NTa
1.3.5 The Reynolds Number, NRe
1.4 Macromolecular and Colloidal Systems
1.5 References
Chapter 2: Elasticity: High Deborah Number Measurements
2.1 Introduction
2.2 The Liquid-Solid Transition
2.2.1 Bulk Elasticity
2.2.2 Wave Propagation
2.3 Crystalline Solids At Large Strains
2.3.1 Lattice Defects
2.4 Macromolecular Solids
2.4.1 Polymers - An Introduction
2.4.2 Chain Conformation
2.4.3 Polymer Crystallinity
2.4.4 Crosslinked Elastomers
2.4.5 Self-associating Polymers
2.4.6 Non-interactive Fillers
2.4.7 Interactive Fillers
2.4.8 Summary of Polymeric Systems
2.5 Colloidal Gels
2.5.1 Interactions Between Colloidal Particles
2.5.2 London - van der Waals' Interactions
2.5.3 Depletion Interactions
2.5.4 Electrostatic Repulsion
2.5.5 Steric Repulsion
2.5.6 Electrosteric Interactions
2.6 References
Chapter 3: Viscosity: Low Deborah Number Measurements
3.1 Initial Considerations
3.2 Viscometric Measurement
3.2.1 The Cone and Plate
3.2.2 The Couette or Concentric Cylinder
3.3 The Molecular Origins on Viscosity
3.3.1 The Flow of Gases
3.3.2 The Flow of Liquids
3.3.3 Density and Phase Changes
3.3.4 Free Volume Model of Liquid Flow
3.3.5 Activation energy Models
3.4 Superfluids
3.5 Macromolecular Fluids
3.5.1 Colloidal Dispersions
3.5.2 Dilute Dispersions of Spheres
3.5.3 Concentrated Dispersions of Spheres
3.5.4 Shear Thickening Behaviour in Dense Suspensions
3.5.5 Charge Stabilised Dispersions
3.5.6 Dilute Polymer Solutions
3.5.7 Surfactant Solutions
3.6 References
Chapter 4: Linear Viscoelasticity I Phenomenological Approach
4.1 Viscoelasticity
4.2 Length and Timescales
4.3 Mechanical Spectroscopy
4.4 Linear Viscoelasticity
4.4.1 Mechanical Analogues
4.4.2 Relaxation Derived as an Analogue to 1 st Order Chemical Kinetics
4.4.1 Oscillation Response
4.4.2 Multiple Processes
4.4.3 A Spectral Approach To Linear Viscoelastic Theory
4.5 Linear Viscoelastic Experiments
4.4.1 Relaxation
4.4.2 Stress Growth
4.4.3 Antthixotropic Response
4.4.4 Creep and Recovery
4.4.5 Strain Oscillation
4.4.6 Stress Oscillation
4.6 Interrelationships Between the Measurements and the Spectra
4.6.1 The Relationship Between Compliance and Modulus
4.6.1 Retardation and Relaxation Spectrum
4.6.2 The Relaxation Function and the Storage and Loss Moduli
4.6.3 Creep and Relaxation Interrelations
4.7 Applications to the Models
4.8 Microstructural Influences on the Kernel
4.8.1 The Extended Exponential
4.8.2 Power law or the Gel Equation
4.8.3 Exact Inversions from the Relaxation or Retardation Spectrum
4.9 Non-shearing Fields and Extension
4.10 References
Chapter 5: Linear Viscoelasticity II. Microstructural Approach
5.1 Intermediate Deborah Numbers
5.2 Hard Spheres and Atomic Fluids
5.3 Quasi-hard Spheres
5.3.1 Quasi-hard Sphere Phase Diagrams
5.3.2 Quasi-hard Sphere Viscoelasticity and Viscosity
5.4 Weakly Attractive Systems
5.5 Charge Repulsion Systems
5.6 Simple Homopolymer systems
5.6.1 Phase Behaviour and the Chain Overlap in Good Solvents
5.6.2 Dilute Solution Polymers
5.6.3 Undiluted and Concentrated Non-entangled Polymers
5.6.4 Entanglement coupling
5.6.5 Reptation and Linear Viscoelasticity
5.7 Polymer Network Structure
5.7.1 The Formation of Gels
5.7.2 Chemical Networks
5.7.3 Physical Networks
5.8 References
Chapter 6: Non-Linear Responses
6.1 Introduction
6.2 The Phenomenological Approach
6.2.1 Flow Curve4s
Definitions and Equations
6.2.2 Time Dependence in Flow and The Boltzmann Superposition Principle
6.2.3 Yield Stress Sedimentation and Linearity
6.3 The Microstructural Approach - Particles
6.2.1 Flow in Hard Sphere Systems
6.2.2 The Addition of a Surface Layer
6.2.3 Aggregation and Dispersion in Shear
6.2.4 Weakly Flocculated Dispersions
6.2.5 Strongly Aggregated and Coagulated Systems
6.2.6 Long Range Repulsive Systems
6.2.7 Rod-like Particles
6.4 The Microstructural Approach - Polymers
6.4.1 The Role of Entanglements in Non-linear Viscoelasticity
6.4.2 Entanglements of Solution Homopolymers
6.4.3 The Reptation Approach
6.5 Novel Applications
6.5.1 Extension and Complex Flows
6.5.2 Uniaxial Compression Modulus
6.5.3 Deformable Particles
6.5 References
Subject Index
1.1 Definitions
1.1.1 Stress and Strain
1.1.2 Rate of Strain and Flow
1.2 Simple Constitutive Equations
1.2.1 Linear and Non-linear Behaviour
1.2.2 Using Constitutive Equations
1.3 Dimensionless Groups
1.3.1 The Deborah Number
1.3.2 The PÚclet Number
1.3.3 The Reduced Stress
1.3.4 The Taylor Number, NTa
1.3.5 The Reynolds Number, NRe
1.4 Macromolecular and Colloidal Systems
1.5 References
Chapter 2: Elasticity: High Deborah Number Measurements
2.1 Introduction
2.2 The Liquid-Solid Transition
2.2.1 Bulk Elasticity
2.2.2 Wave Propagation
2.3 Crystalline Solids At Large Strains
2.3.1 Lattice Defects
2.4 Macromolecular Solids
2.4.1 Polymers - An Introduction
2.4.2 Chain Conformation
2.4.3 Polymer Crystallinity
2.4.4 Crosslinked Elastomers
2.4.5 Self-associating Polymers
2.4.6 Non-interactive Fillers
2.4.7 Interactive Fillers
2.4.8 Summary of Polymeric Systems
2.5 Colloidal Gels
2.5.1 Interactions Between Colloidal Particles
2.5.2 London - van der Waals' Interactions
2.5.3 Depletion Interactions
2.5.4 Electrostatic Repulsion
2.5.5 Steric Repulsion
2.5.6 Electrosteric Interactions
2.6 References
Chapter 3: Viscosity: Low Deborah Number Measurements
3.1 Initial Considerations
3.2 Viscometric Measurement
3.2.1 The Cone and Plate
3.2.2 The Couette or Concentric Cylinder
3.3 The Molecular Origins on Viscosity
3.3.1 The Flow of Gases
3.3.2 The Flow of Liquids
3.3.3 Density and Phase Changes
3.3.4 Free Volume Model of Liquid Flow
3.3.5 Activation energy Models
3.4 Superfluids
3.5 Macromolecular Fluids
3.5.1 Colloidal Dispersions
3.5.2 Dilute Dispersions of Spheres
3.5.3 Concentrated Dispersions of Spheres
3.5.4 Shear Thickening Behaviour in Dense Suspensions
3.5.5 Charge Stabilised Dispersions
3.5.6 Dilute Polymer Solutions
3.5.7 Surfactant Solutions
3.6 References
Chapter 4: Linear Viscoelasticity I Phenomenological Approach
4.1 Viscoelasticity
4.2 Length and Timescales
4.3 Mechanical Spectroscopy
4.4 Linear Viscoelasticity
4.4.1 Mechanical Analogues
4.4.2 Relaxation Derived as an Analogue to 1 st Order Chemical Kinetics
4.4.1 Oscillation Response
4.4.2 Multiple Processes
4.4.3 A Spectral Approach To Linear Viscoelastic Theory
4.5 Linear Viscoelastic Experiments
4.4.1 Relaxation
4.4.2 Stress Growth
4.4.3 Antthixotropic Response
4.4.4 Creep and Recovery
4.4.5 Strain Oscillation
4.4.6 Stress Oscillation
4.6 Interrelationships Between the Measurements and the Spectra
4.6.1 The Relationship Between Compliance and Modulus
4.6.1 Retardation and Relaxation Spectrum
4.6.2 The Relaxation Function and the Storage and Loss Moduli
4.6.3 Creep and Relaxation Interrelations
4.7 Applications to the Models
4.8 Microstructural Influences on the Kernel
4.8.1 The Extended Exponential
4.8.2 Power law or the Gel Equation
4.8.3 Exact Inversions from the Relaxation or Retardation Spectrum
4.9 Non-shearing Fields and Extension
4.10 References
Chapter 5: Linear Viscoelasticity II. Microstructural Approach
5.1 Intermediate Deborah Numbers
5.2 Hard Spheres and Atomic Fluids
5.3 Quasi-hard Spheres
5.3.1 Quasi-hard Sphere Phase Diagrams
5.3.2 Quasi-hard Sphere Viscoelasticity and Viscosity
5.4 Weakly Attractive Systems
5.5 Charge Repulsion Systems
5.6 Simple Homopolymer systems
5.6.1 Phase Behaviour and the Chain Overlap in Good Solvents
5.6.2 Dilute Solution Polymers
5.6.3 Undiluted and Concentrated Non-entangled Polymers
5.6.4 Entanglement coupling
5.6.5 Reptation and Linear Viscoelasticity
5.7 Polymer Network Structure
5.7.1 The Formation of Gels
5.7.2 Chemical Networks
5.7.3 Physical Networks
5.8 References
Chapter 6: Non-Linear Responses
6.1 Introduction
6.2 The Phenomenological Approach
6.2.1 Flow Curve4s
Definitions and Equations
6.2.2 Time Dependence in Flow and The Boltzmann Superposition Principle
6.2.3 Yield Stress Sedimentation and Linearity
6.3 The Microstructural Approach - Particles
6.2.1 Flow in Hard Sphere Systems
6.2.2 The Addition of a Surface Layer
6.2.3 Aggregation and Dispersion in Shear
6.2.4 Weakly Flocculated Dispersions
6.2.5 Strongly Aggregated and Coagulated Systems
6.2.6 Long Range Repulsive Systems
6.2.7 Rod-like Particles
6.4 The Microstructural Approach - Polymers
6.4.1 The Role of Entanglements in Non-linear Viscoelasticity
6.4.2 Entanglements of Solution Homopolymers
6.4.3 The Reptation Approach
6.5 Novel Applications
6.5.1 Extension and Complex Flows
6.5.2 Uniaxial Compression Modulus
6.5.3 Deformable Particles
6.5 References
Subject Index