Important revisions to the third edition include:
- a substantial addition of unique and enriching exercises scattered throughout the text;
- inclusion of an increased number of coordinate calculations of connection and curvature;
- addition of general formulas for curvature on Lie Groups and submersions;
- integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger;
- incorporation of several recent results about manifolds with positive curvature;
- presentation of a new simplifying approach to the Bochner technique for tensors with application to bound topological quantities with general lower curvature bounds.
From reviews of the first edition:
"The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting achievements in Riemannian geometry. It is one of the few comprehensive sources of this type."
¿Bernd Wegner, ZbMATH
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
P. Petersen
Riemannian Geometry
"A nice introduction to Riemannian geometry, containing basic theory as well as several advanced topics."
-EUROPEAN MATHEMATICAL SOCIETY
"This is an introduction to modern methods in Riemannian geometry containing interesting and original approaches to many areas in this field. ... After a general introduction (metrics, curvature, geodesics) and concrete calculations for many examples, the second half of the book considers Bochner-Cartan techniques and comparison geometry. Particularly for these aspects it continues to play an outstanding role among textbooks in Riemannian geometry." (M. Kunzinger, Monatshefte für Mathematik, Vol. 154 (1), May, 2008)