Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
On totally ordered groups, and K0.- Semiprime crossed products.- Biserial rings.- The state space of KO of a ring.- Simple noetherian rings - The zalesskii-neroslavskii examples.- Anneaux de polynomes semi-hereditaires.- Lower K-theory, regular rings and operator algebras - A survey.- Principal ideal theorems.- Modules over the cyclic group of prime order.- Remarks on the projective dimension of ?-unions.- Actions de groupes et anneaux reguliers injectifs.- K2 of some truncated polynomial rings.- Is the brauer group generated by cyclic algebras?.- K-theory of noetherian group rings.- The cancellation problem for projective modules and related topics.- Modules over fully bounded noetherian rings.
On totally ordered groups, and K0.- Semiprime crossed products.- Biserial rings.- The state space of KO of a ring.- Simple noetherian rings - The zalesskii-neroslavskii examples.- Anneaux de polynomes semi-hereditaires.- Lower K-theory, regular rings and operator algebras - A survey.- Principal ideal theorems.- Modules over the cyclic group of prime order.- Remarks on the projective dimension of ?-unions.- Actions de groupes et anneaux reguliers injectifs.- K2 of some truncated polynomial rings.- Is the brauer group generated by cyclic algebras?.- K-theory of noetherian group rings.- The cancellation problem for projective modules and related topics.- Modules over fully bounded noetherian rings.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826