Scaling Analysis in Modeling Transport and Reaction Processes (eBook, PDF)
A Systematic Approach to Model Building and the Art of Approximation
Alle Infos zum eBook verschenken
Scaling Analysis in Modeling Transport and Reaction Processes (eBook, PDF)
A Systematic Approach to Model Building and the Art of Approximation
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is unique as the first effort to expound on the subject of systematic scaling analysis. Not written for a specific discipline, the book targets any reader interested in transport phenomena and reaction processes. The book is logically divided into chapters on the use of systematic scaling analysis in fluid dynamics, heat transfer, mass transfer, and reaction processes. An integrating chapter is included that considers more complex problems involving combined transport phenomena. Each chapter includes several problems that are explained in considerable detail. These are followed by…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.91MB
- Mary C. HillEffective Groundwater Model Calibration (eBook, PDF)123,99 €
- Robert A. HowdRisk Assessment for Chemicals in Drinking Water (eBook, PDF)141,99 €
- Lukasz DebowskiInformation Theory Meets Power Laws (eBook, PDF)100,99 €
- Sunny E. IyukeMeasuring Climate Change to Inform Energy Transitions (eBook, PDF)142,99 €
- F. Xavier MalcataAnalysis of Enzyme Reaction Kinetics (eBook, PDF)430,99 €
- Richard G. RiceSolutions Manual to Accompany Applied Mathematics and Modeling for Chemical Engineers (eBook, PDF)46,99 €
- Faruk CivanPorous Media Transport Phenomena (eBook, PDF)127,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 560
- Erscheinungstermin: 28. Juni 2008
- Englisch
- ISBN-13: 9780470121924
- Artikelnr.: 37290696
- Verlag: John Wiley & Sons
- Seitenzahl: 560
- Erscheinungstermin: 28. Juni 2008
- Englisch
- ISBN-13: 9780470121924
- Artikelnr.: 37290696
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Acknowledgments xv
1 Introduction 1
1.1 Motivation for Using Scaling Analysis 1
1.2 Organization of the Book 5
2 Systematic Method for Scaling Analysis 7
2.1 Introduction 7
2.2 Mathematical Basis for Scaling Analysis 7
2.3 Order-of-One Scaling Analysis 8
2.4 Scaling Alternative for Dimensional Analysis 13
2.5 Summary 18
3 Applications in Fluid Dynamics 19
3.1 Introduction 19
3.2 Fully Developed Laminar Flow 20
3.3 Creeping- and Lubrication-Flow Approximations 26
3.4 Boundary-Layer-Flow Approximation 32
3.5 Quasi-Steady-State-Flow Approximation 38
3.6 Flows with End and Sidewall Effects 43
3.7 Free Surface Flow 45
3.8 Porous Media Flow 52
3.9 Compressible Fluid Flow 56
3.10 Dimensional Analysis Correlation for the Terminal Velocity 62
3.11 Summary 67
3.e Example Problems 70
3.p Practice Problems 110
4 Applications in Heat Transfer 145
4.1 Introduction 145
4.2 Steady-State Heat Transfer with End Effects 146
4.3 Film and Penetration Theory Approximations 153
4.4 Small Biot Number Approximation 159
4.5 Small Peclet Number Approximation 163
4.6 Boundary-Layer or Large Peclet Number Approximation 167
4.7 Heat Transfer with Phase Change 173
4.8 Temperature-Dependent Physical Properties 180
4.9 Thermally Driven Free Convection: Boussinesq Approximation 183
4.10 Dimensional Analysis Correlation for Cooking a Turkey 187
4.11 Summary 193
4.e Example Problems 196
4.p Practice Problems 224
5 Applications in Mass Transfer 252
5.1 Introduction 252
5.2 Film Theory Approximation 253
5.3 Penetration Theory Approximation 259
5.4 Small Peclet Number Approximation 261
5.5 Small Damköhler Number Approximation 266
5.6 Large Peclet Number Approximation 269
5.7 Quasi-Steady-State Approximation 273
5.8 Membrane Permeation with Nonconstant Diffusivity 277
5.9 Solutally Driven Free Convection Due to Evapotranspiration 281
5.10 Dimensional Analysis for a Membrane-Lung Oxygenator 287
5.11 Summary 293
5.e Example Problems 297
5.p Practice Problems 336
6 Applications in Mass Transfer with Chemical Reaction 360
6.1 Introduction 360
6.2 Concept of the Microscale Element 362
6.3 Scaling the Microscale Element 364
6.4 Slow Reaction Regime 371
6.5 Intermediate Reaction Regime 371
6.6 Fast Reaction Regime 372
6.7 Instantaneous Reaction Regime 373
6.8 Scaling the Macroscale Element 377
6.9 Kinetic Domain of the Slow Reaction Regime 380
6.10 Diffusional Domain of the Slow Reaction Regime 381
6.11 Implications of Scaling Analysis for Reactor Design 381
6.12 Mass-Transfer Coefficients for Reacting Systems 387
6.13 Design of a Continuous Stirred Tank Reactor 390
6.14 Design of a Packed Column Absorber 394
6.15 Summary 397
6.p Practice Problems 399
7 Applications in Process Design 414
7.1 Introduction 414
7.2 Design of a Membrane Lung Oxygenator 415
7.3 Pulsed Single-Bed Pressure-Swing Adsorption 424
7.4 Thermally Induced Phase-Separation Process 438
7.5 Fluid-Wall Aerosol Flow Reactor for Hydrogen Production 448
7.6 Summary 464
7.p Practice Problems 467
Appendix A Sign Convention for the Force on a Fluid Particle 480
Appendix B Generalized Form of the Transport Equations 482
B. 1 Continuity Equation 482
B. 2 Equations of Motion 482
B. 3 Equations of Motion for Porous Media 483
B. 4 Thermal Energy Equation 483
B. 5 Equation of Continuity for a Binary Mixture 484
Appendix c Continuity Equation 486
C. 1 Rectangular Coordinates 486
C. 2 Cylindrical Coordinates 487
C. 3 Spherical Coordinates 487
Appendix d Equations of Motion 489
D. 1 Rectangular Coordinates 489
D. 2 Cylindrical Coordinates 490
D. 3 Spherical Coordinates 492
Appendix E Equations of Motion for Porous Media 494
E. 1 Rectangular Coordinates 494
E. 2 Cylindrical Coordinates 494
E. 3 Spherical Coordinates 495
Appendix F Thermal Energy Equation 496
F. 1 Rectangular Coordinates 496
F. 2 Cylindrical Coordinates 497
F. 3 Spherical Coordinates 497
Appendix G Equation of Continuity for a Binary Mixture 499
G.1 Rectangular Coordinates 499
G. 2 Cylindrical Coordinates 500
G. 3 Spherical Coordinates 502
Appendix H Integral Relationships 504
H.1 Leibnitz Formula for Differentiating an Integral 504
H.2 Gauss Ostrogradskii Divergence Theorem 504
Notation 506
Index 515
Acknowledgments xv
1 Introduction 1
1.1 Motivation for Using Scaling Analysis 1
1.2 Organization of the Book 5
2 Systematic Method for Scaling Analysis 7
2.1 Introduction 7
2.2 Mathematical Basis for Scaling Analysis 7
2.3 Order-of-One Scaling Analysis 8
2.4 Scaling Alternative for Dimensional Analysis 13
2.5 Summary 18
3 Applications in Fluid Dynamics 19
3.1 Introduction 19
3.2 Fully Developed Laminar Flow 20
3.3 Creeping- and Lubrication-Flow Approximations 26
3.4 Boundary-Layer-Flow Approximation 32
3.5 Quasi-Steady-State-Flow Approximation 38
3.6 Flows with End and Sidewall Effects 43
3.7 Free Surface Flow 45
3.8 Porous Media Flow 52
3.9 Compressible Fluid Flow 56
3.10 Dimensional Analysis Correlation for the Terminal Velocity 62
3.11 Summary 67
3.e Example Problems 70
3.p Practice Problems 110
4 Applications in Heat Transfer 145
4.1 Introduction 145
4.2 Steady-State Heat Transfer with End Effects 146
4.3 Film and Penetration Theory Approximations 153
4.4 Small Biot Number Approximation 159
4.5 Small Peclet Number Approximation 163
4.6 Boundary-Layer or Large Peclet Number Approximation 167
4.7 Heat Transfer with Phase Change 173
4.8 Temperature-Dependent Physical Properties 180
4.9 Thermally Driven Free Convection: Boussinesq Approximation 183
4.10 Dimensional Analysis Correlation for Cooking a Turkey 187
4.11 Summary 193
4.e Example Problems 196
4.p Practice Problems 224
5 Applications in Mass Transfer 252
5.1 Introduction 252
5.2 Film Theory Approximation 253
5.3 Penetration Theory Approximation 259
5.4 Small Peclet Number Approximation 261
5.5 Small Damköhler Number Approximation 266
5.6 Large Peclet Number Approximation 269
5.7 Quasi-Steady-State Approximation 273
5.8 Membrane Permeation with Nonconstant Diffusivity 277
5.9 Solutally Driven Free Convection Due to Evapotranspiration 281
5.10 Dimensional Analysis for a Membrane-Lung Oxygenator 287
5.11 Summary 293
5.e Example Problems 297
5.p Practice Problems 336
6 Applications in Mass Transfer with Chemical Reaction 360
6.1 Introduction 360
6.2 Concept of the Microscale Element 362
6.3 Scaling the Microscale Element 364
6.4 Slow Reaction Regime 371
6.5 Intermediate Reaction Regime 371
6.6 Fast Reaction Regime 372
6.7 Instantaneous Reaction Regime 373
6.8 Scaling the Macroscale Element 377
6.9 Kinetic Domain of the Slow Reaction Regime 380
6.10 Diffusional Domain of the Slow Reaction Regime 381
6.11 Implications of Scaling Analysis for Reactor Design 381
6.12 Mass-Transfer Coefficients for Reacting Systems 387
6.13 Design of a Continuous Stirred Tank Reactor 390
6.14 Design of a Packed Column Absorber 394
6.15 Summary 397
6.p Practice Problems 399
7 Applications in Process Design 414
7.1 Introduction 414
7.2 Design of a Membrane Lung Oxygenator 415
7.3 Pulsed Single-Bed Pressure-Swing Adsorption 424
7.4 Thermally Induced Phase-Separation Process 438
7.5 Fluid-Wall Aerosol Flow Reactor for Hydrogen Production 448
7.6 Summary 464
7.p Practice Problems 467
Appendix A Sign Convention for the Force on a Fluid Particle 480
Appendix B Generalized Form of the Transport Equations 482
B. 1 Continuity Equation 482
B. 2 Equations of Motion 482
B. 3 Equations of Motion for Porous Media 483
B. 4 Thermal Energy Equation 483
B. 5 Equation of Continuity for a Binary Mixture 484
Appendix c Continuity Equation 486
C. 1 Rectangular Coordinates 486
C. 2 Cylindrical Coordinates 487
C. 3 Spherical Coordinates 487
Appendix d Equations of Motion 489
D. 1 Rectangular Coordinates 489
D. 2 Cylindrical Coordinates 490
D. 3 Spherical Coordinates 492
Appendix E Equations of Motion for Porous Media 494
E. 1 Rectangular Coordinates 494
E. 2 Cylindrical Coordinates 494
E. 3 Spherical Coordinates 495
Appendix F Thermal Energy Equation 496
F. 1 Rectangular Coordinates 496
F. 2 Cylindrical Coordinates 497
F. 3 Spherical Coordinates 497
Appendix G Equation of Continuity for a Binary Mixture 499
G.1 Rectangular Coordinates 499
G. 2 Cylindrical Coordinates 500
G. 3 Spherical Coordinates 502
Appendix H Integral Relationships 504
H.1 Leibnitz Formula for Differentiating an Integral 504
H.2 Gauss Ostrogradskii Divergence Theorem 504
Notation 506
Index 515