Scaling, Fractals and Wavelets (eBook, PDF)
Redaktion: Abry, Patrice; Vehel, Jacques Levy; Goncalves, Paolo
Alle Infos zum eBook verschenken
Scaling, Fractals and Wavelets (eBook, PDF)
Redaktion: Abry, Patrice; Vehel, Jacques Levy; Goncalves, Paolo
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Scaling is a mathematical transformation that enlarges or diminishes objects. The technique is used in a variety of areas, including finance and image processing. This book is organized around the notions of scaling phenomena and scale invariance. The various stochastic models commonly used to describe scaling -- self-similarity, long-range dependence and multi-fractals -- are introduced. These models are compared and related to one another. Next, fractional integration, a mathematical tool closely related to the notion of scale invariance, is discussed, and stochastic processes with…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.02MB
- Scaling, Fractals and Wavelets (eBook, ePUB)215,99 €
- Antonios K. AlexandridisWavelet Neural Networks (eBook, PDF)90,99 €
- David K. RuchWavelet Theory (eBook, PDF)112,99 €
- Mathematical Modeling with Multidisciplinary Applications (eBook, PDF)120,99 €
- James F. EppersonAn Introduction to Numerical Methods and Analysis (eBook, PDF)106,99 €
- Handbook of Optimization in Telecommunications (eBook, PDF)161,95 €
- Wavelets (eBook, PDF)62,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 464
- Erscheinungstermin: 11. Januar 2010
- Englisch
- ISBN-13: 9780470394229
- Artikelnr.: 38201938
- Verlag: John Wiley & Sons
- Seitenzahl: 464
- Erscheinungstermin: 11. Januar 2010
- Englisch
- ISBN-13: 9780470394229
- Artikelnr.: 38201938
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
-stable processes 196 5.3.3. Censov and Takenaka processes 198 5.3.4. Wavelet decomposition 198 5.3.5. Process subordinated to Brownian measure 199 5.4. Regularity and long-range dependence 200 5.4.1. Introduction 200 5.4.2. Two examples 201 5.5.Bibliography 202 Chapter 6. Locally Self-similar Fields 205 Serge COHEN 6.1. Introduction 205 6.2. Recap of two representations of fractional Brownian motion 207 6.2.1. Reproducing kernel Hilbert space 207 6.2.2. Harmonizable representation 208 6.3. Two examples of locally self-similar fields 213 6.3.1. Definition of the local asymptotic self-similarity (LASS) 213 6.3.2. Filtered white noise (FWN) 214 6.3.3. Elliptic Gaussian random fields (EGRP) 215 6.4. Multifractional fields and trajectorial regularity 218 6.4.1.Two representations of theMBM 219 6.4.2. Study of the regularity of the trajectories of the MBM 221 6.4.3. Towards more irregularities: generalized multifractional Brownian motion (GMBM) and step fractional Brownian motion (SFBM) 222 6.5. Estimate of regularity 226 6.5.1. General method: generalized quadratic variation 226 6.5.2. Application to the examples 228 6.6.Bibliography 235 Chapter 7. An Introduction to Fractional Calculus 237 Denis MATIGNON 7.1. Introduction 237 7.1.1.Motivations 237 7.1.2. Problems 238 7.1.3. Outline 239 7.2. Definitions 240 7.2.1. Fractional integration 240 7.2.2. Fractional derivatives within the framework of causal distributions 242 7.2.3. Mild fractional derivatives, in the Caputo sense 246 7.3. Fractional differential equations 251 7.3.1. Example 251 7.3.2. Framework of causal distributions 254 7.3.3. Framework of functions expandable into fractional power series (
-FPSE) 255 7.3.4. Asymptotic behavior of fundamental solutions 257 7.3.5. Controlled-and-observed linear dynamic systems of fractional order 261 7.4. Diffusive structure of fractional differential systems 262 7.4.1. Introduction to diffusive representations of pseudo-differential operators 263 7.4.2. General decomposition result 264 7.4.3. Connection with the concept of long memory 265 7.4.4. Particular case of fractional differential systems of commensurate orders 265 7.5. Example of a fractional partial differential equation 266 7.5.1. Physical problem considered 267 7.5.2. Spectral consequences 268 7.5.3. Time-domain consequences 268 7.5.4. Free problem 272 7.6. Conclusion 273 7.7.Bibliography 273 Chapter 8. Fractional Synthesis, Fractional Filters 279 Liliane BEL, Georges OPPENHEIM, Luc ROBBIANO and Marie-Claude VIANO 8.1. Traditional and less traditional questions about fractionals 279 8.1.1.Notes on terminology 279 8.1.2. Short and long memory 279 8.1.3. From integer to non-integer powers: filter based sample path design 280 8.1.4. Local and global properties 281 8.2. Fractional filters 282 8.2.1. Desired general properties: association 282 8.2.2. Construction and approximation techniques 282 8.3. Discrete time fractional processes 284 8.3.1. Filters: impulse responses and corresponding processes 284 8.3.2. Mixing and memory properties 286 8.3.3. Parameter estimation 287 8.3.4. Simulated example 289 8.4. Continuous time fractional processes 291 8.4.1. A non-self-similar family: fractional processes designed from fractional filters 291 8.4.2. Sample path properties: local and global regularity, memory 293 8.5. Distribution processes 294 8.5.1. Motivation and generalization of distribution processes 294 8.5.2. The family of linear distribution processes 294 8.5.3. Fractional distribution processes 295 8.5.4. Mixing and memory properties 296 8.6.Bibliography 297 Chapter 9. Iterated Function Systems and Some Generalizations: Local Regularity Analysis and Multifractal Modeling of Signals 301 Khalid DAOUDI 9.1. Introduction 301 9.2. Definition of the Holder exponent 303 9.3. Iterated function systems (IFS) 304 9.4. Generalization of iterated function systems 306 9.4.1. Semi-generalized iterated function systems 307 9.4.2. Generalized iterated function systems 308 9.5. Estimation of pointwise Holder exponent by GIFS 311 9.5.1. Principles of themethod 312 9.5.2. Algorithm 314 9.5.3.Application 315 9.6. Weak self-similar functions and multifractal formalism 318 9.7. Signal representation by WSA functions 320 9.8. Segmentation of signals by weak self-similar functions 324 9.9. Estimation of the multifractal spectrum 326 9.10. Experiments 327 9.11.Bibliography 329 Chapter 10. Iterated Function Systems and Applications in Image Processing 333 Franck DAVOINE and Jean-Marc CHASSERY 10.1. Introduction 333 10.2. Iterated transformation systems 333 10.2.1. Contracting transformations and iterated transformation systems 334 10.2.2.Attractor of an iterated transformation system 335 10.2.3. Collage theorem 336 10.2.4. Finally contracting transformation 338 10.2.5. Attractor and invariant measures 339 10.2.6. Inverse problem 340 10.3. Application to natural image processing: image coding 340 10.3.1. Introduction 340 10.3.2. Coding of natural images by fractals 342 10.3.3. Algebraic formulation of the fractal transformation 345 10.3.4. Experimentation on triangular partitions 351 10.3.5. Coding and decoding acceleration 352 10.3.6. Other optimization diagrams: hybrid methods 360 10.4.Bibliography 362 Chapter 11. Local Regularity and Multifractal Methods for Image and Signal Analysis 367 Pierrick LEGRAND 11.1. Introduction 367 11.2.Basic tools 368 11.2.1. Holder regularity analysis 368 11.2.2. Reminders on multifractal analysis 369 11.3. Holderian regularity estimation 371 11.3.1. Oscillations (OSC) 371 11.3.2. Wavelet coefficient regression (WCR) 372 11.3.3. Wavelet leaders regression (WL) 372 11.3.4.Limit inf and limit sup regressions 373 11.3.5. Numerical experiments 374 11.4. Denoising 376 11.4.1. Introduction 376 11.4.2. Minimax risk, optimal convergence rate and adaptivity 377 11.4.3. Wavelet based denoising 378 11.4.4. Non-linear wavelet coefficients pumping 380 11.4.5. Denoising using exponent between scales 383 11.4.6. Bayesian multifractal denoising 386 11.5. Holderian regularity based interpolation 393 11.5.1. Introduction 393 11.5.2.Themethod 393 11.5.3. Regularity and asymptotic properties 394 11.5.4. Numerical experiments 394 11.6. Biomedical signal analysis 394 11.7. Texture segmentation 401 11.8. Edge detection 403 11.8.1. Introduction 403 11.8.1.1. Edge detection 406 11.9. Change detection in image sequences using multifractal analysis 407 11.10. Image reconstruction 408 11.11.Bibliography 409 Chapter 12. Scale Invariance in Computer Network Traffic 413 Darryl VEITCH 12.1. Teletraffic - a new natural phenomenon 413 12.1.1. A phenomenon of scales 413 12.1.2. An experimental science of "man-made atoms" 415 12.1.3. A random current 416 12.1.4. Two fundamental approaches 417 12.2. From a wealth of scales arise scaling laws 419 12.2.1. First discoveries 419 12.2.2.Laws reign 420 12.2.3. Beyond the revolution 424 12.3. Sources as the source of the laws 426 12.3.1.The sumor its parts 426 12.3.2.The on/off paradigm 427 12.3.3. Chemistry 428 12.3.4. Mechanisms 429 12.4. New models, new behaviors 430 12.4.1. Character of a model 430 12.4.2. The fractional Brownian motion family 431 12.4.3. Greedy sources 432 12.4.4. Never-ending calls 432 12.5. Perspectives 433 12.6.Bibliography 434 Chapter 13. Research of Scaling Law on Stock Market Variations 437 Christian WALTER 13.1. Introduction: fractals in finance 437 13.2. Presence of scales in the study of stock market variations 439 13.2.1. Modeling of stock market variations 439 13.2.2. Time scales in financial modeling 445 13.3. Modeling postulating independence on stock market returns 446 13.3.1. 1960-1970: from Pareto's law to Levy's distributions 446 13.3.2. 1970-1990: experimental difficulties of iid-
-stable model 448 13.3.3. Unstable iid models in partial scaling invariance 452 13.4. Research of dependency and memory of markets 454 13.4.1. Linear dependence: testing of H-correlative models on returns 454 13.4.2. Non-linear dependence: validating H-correlative model on volatilities 456 13.5. Towards a rediscovery of scaling laws in finance 457 13.6.Bibliography 458 Chapter 14. Scale Relativity, Non-differentiability and Fractal Space-time 465 Laurent NOTTALE 14.1. Introduction 465 14.2. Abandonment of the hypothesis of space-time differentiability 466 14.3. Towards a fractal space-time 466 14.3.1. Explicit dependence of coordinates on spatio-temporal resolutions 467 14.3.2. From continuity and non-differentiability to fractality 467 14.3.3. Description of non-differentiable process by differential equations 469 14.3.4. Differential dilation operator 471 14.4. Relativity and scale covariance 472 14.5. Scale differential equations 472 14.5.1. Constant fractal dimension: "Galilean" scale relativity 473 14.5.2. Breaking scale invariance: transition scales 474 14.5.3. Non-linear scale laws: second order equations, discrete scale invariance, log-periodic laws 475 14.5.4. Variable fractal dimension: Euler-Lagrange scale equations 476 14.5.5. Scale dynamics and scale force 478 14.5.6. Special scale relativity - log-Lorentzian dilation laws, invariant scale limit under dilations 481 14.5.7. Generalized scale relativity and scale-motion coupling 482 14.6. Quantum-like induced dynamics 488 14.6.1. Generalized Schrodinger equation 488 14.6.2. Application in gravitational structure formation 492 14.7. Conclusion 493 14.8.Bibliography 495 List of Authors 499 Index 503
-stable processes 196 5.3.3. Censov and Takenaka processes 198 5.3.4. Wavelet decomposition 198 5.3.5. Process subordinated to Brownian measure 199 5.4. Regularity and long-range dependence 200 5.4.1. Introduction 200 5.4.2. Two examples 201 5.5.Bibliography 202 Chapter 6. Locally Self-similar Fields 205 Serge COHEN 6.1. Introduction 205 6.2. Recap of two representations of fractional Brownian motion 207 6.2.1. Reproducing kernel Hilbert space 207 6.2.2. Harmonizable representation 208 6.3. Two examples of locally self-similar fields 213 6.3.1. Definition of the local asymptotic self-similarity (LASS) 213 6.3.2. Filtered white noise (FWN) 214 6.3.3. Elliptic Gaussian random fields (EGRP) 215 6.4. Multifractional fields and trajectorial regularity 218 6.4.1.Two representations of theMBM 219 6.4.2. Study of the regularity of the trajectories of the MBM 221 6.4.3. Towards more irregularities: generalized multifractional Brownian motion (GMBM) and step fractional Brownian motion (SFBM) 222 6.5. Estimate of regularity 226 6.5.1. General method: generalized quadratic variation 226 6.5.2. Application to the examples 228 6.6.Bibliography 235 Chapter 7. An Introduction to Fractional Calculus 237 Denis MATIGNON 7.1. Introduction 237 7.1.1.Motivations 237 7.1.2. Problems 238 7.1.3. Outline 239 7.2. Definitions 240 7.2.1. Fractional integration 240 7.2.2. Fractional derivatives within the framework of causal distributions 242 7.2.3. Mild fractional derivatives, in the Caputo sense 246 7.3. Fractional differential equations 251 7.3.1. Example 251 7.3.2. Framework of causal distributions 254 7.3.3. Framework of functions expandable into fractional power series (
-FPSE) 255 7.3.4. Asymptotic behavior of fundamental solutions 257 7.3.5. Controlled-and-observed linear dynamic systems of fractional order 261 7.4. Diffusive structure of fractional differential systems 262 7.4.1. Introduction to diffusive representations of pseudo-differential operators 263 7.4.2. General decomposition result 264 7.4.3. Connection with the concept of long memory 265 7.4.4. Particular case of fractional differential systems of commensurate orders 265 7.5. Example of a fractional partial differential equation 266 7.5.1. Physical problem considered 267 7.5.2. Spectral consequences 268 7.5.3. Time-domain consequences 268 7.5.4. Free problem 272 7.6. Conclusion 273 7.7.Bibliography 273 Chapter 8. Fractional Synthesis, Fractional Filters 279 Liliane BEL, Georges OPPENHEIM, Luc ROBBIANO and Marie-Claude VIANO 8.1. Traditional and less traditional questions about fractionals 279 8.1.1.Notes on terminology 279 8.1.2. Short and long memory 279 8.1.3. From integer to non-integer powers: filter based sample path design 280 8.1.4. Local and global properties 281 8.2. Fractional filters 282 8.2.1. Desired general properties: association 282 8.2.2. Construction and approximation techniques 282 8.3. Discrete time fractional processes 284 8.3.1. Filters: impulse responses and corresponding processes 284 8.3.2. Mixing and memory properties 286 8.3.3. Parameter estimation 287 8.3.4. Simulated example 289 8.4. Continuous time fractional processes 291 8.4.1. A non-self-similar family: fractional processes designed from fractional filters 291 8.4.2. Sample path properties: local and global regularity, memory 293 8.5. Distribution processes 294 8.5.1. Motivation and generalization of distribution processes 294 8.5.2. The family of linear distribution processes 294 8.5.3. Fractional distribution processes 295 8.5.4. Mixing and memory properties 296 8.6.Bibliography 297 Chapter 9. Iterated Function Systems and Some Generalizations: Local Regularity Analysis and Multifractal Modeling of Signals 301 Khalid DAOUDI 9.1. Introduction 301 9.2. Definition of the Holder exponent 303 9.3. Iterated function systems (IFS) 304 9.4. Generalization of iterated function systems 306 9.4.1. Semi-generalized iterated function systems 307 9.4.2. Generalized iterated function systems 308 9.5. Estimation of pointwise Holder exponent by GIFS 311 9.5.1. Principles of themethod 312 9.5.2. Algorithm 314 9.5.3.Application 315 9.6. Weak self-similar functions and multifractal formalism 318 9.7. Signal representation by WSA functions 320 9.8. Segmentation of signals by weak self-similar functions 324 9.9. Estimation of the multifractal spectrum 326 9.10. Experiments 327 9.11.Bibliography 329 Chapter 10. Iterated Function Systems and Applications in Image Processing 333 Franck DAVOINE and Jean-Marc CHASSERY 10.1. Introduction 333 10.2. Iterated transformation systems 333 10.2.1. Contracting transformations and iterated transformation systems 334 10.2.2.Attractor of an iterated transformation system 335 10.2.3. Collage theorem 336 10.2.4. Finally contracting transformation 338 10.2.5. Attractor and invariant measures 339 10.2.6. Inverse problem 340 10.3. Application to natural image processing: image coding 340 10.3.1. Introduction 340 10.3.2. Coding of natural images by fractals 342 10.3.3. Algebraic formulation of the fractal transformation 345 10.3.4. Experimentation on triangular partitions 351 10.3.5. Coding and decoding acceleration 352 10.3.6. Other optimization diagrams: hybrid methods 360 10.4.Bibliography 362 Chapter 11. Local Regularity and Multifractal Methods for Image and Signal Analysis 367 Pierrick LEGRAND 11.1. Introduction 367 11.2.Basic tools 368 11.2.1. Holder regularity analysis 368 11.2.2. Reminders on multifractal analysis 369 11.3. Holderian regularity estimation 371 11.3.1. Oscillations (OSC) 371 11.3.2. Wavelet coefficient regression (WCR) 372 11.3.3. Wavelet leaders regression (WL) 372 11.3.4.Limit inf and limit sup regressions 373 11.3.5. Numerical experiments 374 11.4. Denoising 376 11.4.1. Introduction 376 11.4.2. Minimax risk, optimal convergence rate and adaptivity 377 11.4.3. Wavelet based denoising 378 11.4.4. Non-linear wavelet coefficients pumping 380 11.4.5. Denoising using exponent between scales 383 11.4.6. Bayesian multifractal denoising 386 11.5. Holderian regularity based interpolation 393 11.5.1. Introduction 393 11.5.2.Themethod 393 11.5.3. Regularity and asymptotic properties 394 11.5.4. Numerical experiments 394 11.6. Biomedical signal analysis 394 11.7. Texture segmentation 401 11.8. Edge detection 403 11.8.1. Introduction 403 11.8.1.1. Edge detection 406 11.9. Change detection in image sequences using multifractal analysis 407 11.10. Image reconstruction 408 11.11.Bibliography 409 Chapter 12. Scale Invariance in Computer Network Traffic 413 Darryl VEITCH 12.1. Teletraffic - a new natural phenomenon 413 12.1.1. A phenomenon of scales 413 12.1.2. An experimental science of "man-made atoms" 415 12.1.3. A random current 416 12.1.4. Two fundamental approaches 417 12.2. From a wealth of scales arise scaling laws 419 12.2.1. First discoveries 419 12.2.2.Laws reign 420 12.2.3. Beyond the revolution 424 12.3. Sources as the source of the laws 426 12.3.1.The sumor its parts 426 12.3.2.The on/off paradigm 427 12.3.3. Chemistry 428 12.3.4. Mechanisms 429 12.4. New models, new behaviors 430 12.4.1. Character of a model 430 12.4.2. The fractional Brownian motion family 431 12.4.3. Greedy sources 432 12.4.4. Never-ending calls 432 12.5. Perspectives 433 12.6.Bibliography 434 Chapter 13. Research of Scaling Law on Stock Market Variations 437 Christian WALTER 13.1. Introduction: fractals in finance 437 13.2. Presence of scales in the study of stock market variations 439 13.2.1. Modeling of stock market variations 439 13.2.2. Time scales in financial modeling 445 13.3. Modeling postulating independence on stock market returns 446 13.3.1. 1960-1970: from Pareto's law to Levy's distributions 446 13.3.2. 1970-1990: experimental difficulties of iid-
-stable model 448 13.3.3. Unstable iid models in partial scaling invariance 452 13.4. Research of dependency and memory of markets 454 13.4.1. Linear dependence: testing of H-correlative models on returns 454 13.4.2. Non-linear dependence: validating H-correlative model on volatilities 456 13.5. Towards a rediscovery of scaling laws in finance 457 13.6.Bibliography 458 Chapter 14. Scale Relativity, Non-differentiability and Fractal Space-time 465 Laurent NOTTALE 14.1. Introduction 465 14.2. Abandonment of the hypothesis of space-time differentiability 466 14.3. Towards a fractal space-time 466 14.3.1. Explicit dependence of coordinates on spatio-temporal resolutions 467 14.3.2. From continuity and non-differentiability to fractality 467 14.3.3. Description of non-differentiable process by differential equations 469 14.3.4. Differential dilation operator 471 14.4. Relativity and scale covariance 472 14.5. Scale differential equations 472 14.5.1. Constant fractal dimension: "Galilean" scale relativity 473 14.5.2. Breaking scale invariance: transition scales 474 14.5.3. Non-linear scale laws: second order equations, discrete scale invariance, log-periodic laws 475 14.5.4. Variable fractal dimension: Euler-Lagrange scale equations 476 14.5.5. Scale dynamics and scale force 478 14.5.6. Special scale relativity - log-Lorentzian dilation laws, invariant scale limit under dilations 481 14.5.7. Generalized scale relativity and scale-motion coupling 482 14.6. Quantum-like induced dynamics 488 14.6.1. Generalized Schrodinger equation 488 14.6.2. Application in gravitational structure formation 492 14.7. Conclusion 493 14.8.Bibliography 495 List of Authors 499 Index 503