Scattering and Diffraction by Wedges 1 (eBook, PDF)
The Wiener-Hopf Solution - Theory
Alle Infos zum eBook verschenken
Scattering and Diffraction by Wedges 1 (eBook, PDF)
The Wiener-Hopf Solution - Theory
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book has a dual purpose. The first is to expose a general methodology to solve problems of electromagnetism in geometries constituted of angular regions. The second is to bring the solutions of some canonical problems of fundamental importance in modern electromagnetic engineering with the use of the Wiener-Hopf technique. In particular, the general mathematical methodology is very ingenious and original. It is based on sophisticated and attractive procedures exploiting simple and advanced properties of analytical functions. Once the reader has acquired the methodology, they can easily…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 6.38MB
- Vito G. DanieleScattering and Diffraction by Wedges 2 (eBook, PDF)139,99 €
- Prabhakar H. PathakElectromagnetic Radiation, Scattering, and Diffraction (eBook, PDF)148,99 €
- Peter M. van den BergForward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations (eBook, PDF)130,99 €
- Nicolas PinelElectromagnetic Wave Scattering from Random Rough Surfaces (eBook, PDF)139,99 €
- Stefan BilbaoWave and Scattering Methods for Numerical Simulation (eBook, PDF)143,99 €
- Xudong ChenComputational Methods for Electromagnetic Inverse Scattering (eBook, PDF)123,99 €
- Andrey V. OsipovModern Electromagnetic Scattering Theory with Applications (eBook, PDF)147,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 7. September 2020
- Englisch
- ISBN-13: 9781119780052
- Artikelnr.: 60131069
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 7. September 2020
- Englisch
- ISBN-13: 9781119780052
- Artikelnr.: 60131069
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
-plane 28 1.13. The complex plane w 30 1.14. The WH unknowns in the w plane 34 1.15. The Fredholm factorization technique in the w plane 36 1.16. Analytic continuation in the w plane 40 1.17. The Fredholm factorization technique to factorize the kernel 42 1.18. Some examples of the Fredholm factorization method 45 Appendix 1.A: effect of using j and i as imaginary units in Fourier transforms 52 Appendix 1.B: compactness of the matrix kernel G-1(
)G(u)-1/u-
Chapter 2. A Basic Example: Scattering by a Half-plane 59 2.1. The fundamental problem of diffraction in wave motion 59 2.2. Unified theory of transverse equations in arbitrary stratified regions 62 2.3. WH equation for electromagnetic diffraction by a perfectly electrically conducting (PEC) half-plane illuminated by an Ez-polarized plane wave at normal incidence 67 2.4. Non-standard contributions of WH unknowns in the PEC half-plane illuminated by an Ez-polarized plane wave at normal incidence 69 2.5. Solution of the WH equation of the PEC half-plane using classical closed-form factorization 71 2.6. Solution of the WH equation of the PEC half-plane using the Fredholm factorization method 72 2.7. Field estimation 73 2.8. Numerical validation of the Fredholm factorization method 85 2.9. Generality of the wave motion in a homogeneous isotropic elastic solid 91 2.10. Plane waves in a homogeneous elastic solid and simplifications 103 2.11. Diffraction by a half-infinite crack in a homogeneous elastic solid planar problem 110 2.12. Diffraction by a half-infinite crack in a homogeneous isotropic two-dimensional elastic solid problem 113 Chapter 3. The Wiener-Hopf Theory for Angular Region Problems 123 3.1. A brief history of the classical methods for studying angular regions 123 3.2. Introduction to the generalized Wiener-Hopf technique 125 3.3. WH functional equations in the angular region filled by a homogeneous isotropic medium in Electromagnetics 127 3.4. Reduction of the generalized functional equations of an angular region to functional equations defined in the same complex plane 141 3.5. Generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 151 3.6. Solution of generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 153 3.7. Non-standard parts of the plus and minus functions in GWHEs for the impenetrable wedge scattering problem 154 3.8. Closed-form solution of the PEC wedge scattering problem at normal incidence 158 3.9. Alternative solution of the PEC wedge scattering problem at normal incidence via difference equations 160 3.10. Generalized WH functional equations for angular regions in the w plane 164 3.11. Rotating wave method 167 3.12. Properties of rotating waves 172 3.13. Spectral field component in w for an arbitrary direction
using rotating waves 178 3.14. Rotating waves in areas different from electromagnetism 180 3.15. Closed-form solution of the diffraction of an elastic SH wave by wedge with classical factorization 182 3.16. Rotating waves with the MF transform for wedge problems 185 3.17. Alternative solution of PEC wedge scattering problems via difference equations and the MF transform in terms of rotating waves 187 Appendix 3.A: the Malyuzhinets-Fourier (MF) transform 188 References 193 Index 197 Summary of Volume 2 201
-plane 28 1.13. The complex plane w 30 1.14. The WH unknowns in the w plane 34 1.15. The Fredholm factorization technique in the w plane 36 1.16. Analytic continuation in the w plane 40 1.17. The Fredholm factorization technique to factorize the kernel 42 1.18. Some examples of the Fredholm factorization method 45 Appendix 1.A: effect of using j and i as imaginary units in Fourier transforms 52 Appendix 1.B: compactness of the matrix kernel G-1(
)G(u)-1/u-
Chapter 2. A Basic Example: Scattering by a Half-plane 59 2.1. The fundamental problem of diffraction in wave motion 59 2.2. Unified theory of transverse equations in arbitrary stratified regions 62 2.3. WH equation for electromagnetic diffraction by a perfectly electrically conducting (PEC) half-plane illuminated by an Ez-polarized plane wave at normal incidence 67 2.4. Non-standard contributions of WH unknowns in the PEC half-plane illuminated by an Ez-polarized plane wave at normal incidence 69 2.5. Solution of the WH equation of the PEC half-plane using classical closed-form factorization 71 2.6. Solution of the WH equation of the PEC half-plane using the Fredholm factorization method 72 2.7. Field estimation 73 2.8. Numerical validation of the Fredholm factorization method 85 2.9. Generality of the wave motion in a homogeneous isotropic elastic solid 91 2.10. Plane waves in a homogeneous elastic solid and simplifications 103 2.11. Diffraction by a half-infinite crack in a homogeneous elastic solid planar problem 110 2.12. Diffraction by a half-infinite crack in a homogeneous isotropic two-dimensional elastic solid problem 113 Chapter 3. The Wiener-Hopf Theory for Angular Region Problems 123 3.1. A brief history of the classical methods for studying angular regions 123 3.2. Introduction to the generalized Wiener-Hopf technique 125 3.3. WH functional equations in the angular region filled by a homogeneous isotropic medium in Electromagnetics 127 3.4. Reduction of the generalized functional equations of an angular region to functional equations defined in the same complex plane 141 3.5. Generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 151 3.6. Solution of generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 153 3.7. Non-standard parts of the plus and minus functions in GWHEs for the impenetrable wedge scattering problem 154 3.8. Closed-form solution of the PEC wedge scattering problem at normal incidence 158 3.9. Alternative solution of the PEC wedge scattering problem at normal incidence via difference equations 160 3.10. Generalized WH functional equations for angular regions in the w plane 164 3.11. Rotating wave method 167 3.12. Properties of rotating waves 172 3.13. Spectral field component in w for an arbitrary direction
using rotating waves 178 3.14. Rotating waves in areas different from electromagnetism 180 3.15. Closed-form solution of the diffraction of an elastic SH wave by wedge with classical factorization 182 3.16. Rotating waves with the MF transform for wedge problems 185 3.17. Alternative solution of PEC wedge scattering problems via difference equations and the MF transform in terms of rotating waves 187 Appendix 3.A: the Malyuzhinets-Fourier (MF) transform 188 References 193 Index 197 Summary of Volume 2 201