Security of Block Ciphers (eBook, ePUB)
From Algorithm Design to Hardware Implementation
Security of Block Ciphers (eBook, ePUB)
From Algorithm Design to Hardware Implementation
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive evaluation of information security analysis spanning the intersection of cryptanalysis and side-channel analysis * Written by authors known within the academic cryptography community, this book presents the latest developments in current research * Unique in its combination of both algorithmic-level design and hardware-level implementation; this all-round approach - algorithm to implementation - covers security from start to completion * Deals with AES (Advanced Encryption standard), one of the most used symmetric-key ciphers, which helps the reader to learn the fundamental…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 30.9MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 312
- Erscheinungstermin: 16. Juli 2015
- Englisch
- ISBN-13: 9781118660041
- Artikelnr.: 43417536
- Verlag: John Wiley & Sons
- Seitenzahl: 312
- Erscheinungstermin: 16. Juli 2015
- Englisch
- ISBN-13: 9781118660041
- Artikelnr.: 43417536
96 4.2.11 Advanced Differential Cryptanalysis for Four-Round AES
103 4.2.12 Preventing Differential Cryptanalysis
106 4.3 Impossible Differential Cryptanalysis 110 4.3.1 Basic Concept and Definition 110 4.3.2 Impossible Differential Characteristic for 3.5-round AES 111 4.3.3 Key Recovery Attacks for Five-Round AES 114 4.3.4 Key Recovery Attacks for Seven-Round AES
123 4.4 Integral Cryptanalysis 131 4.4.1 Basic Concept 131 4.4.2 Processing P through Subkey XOR 132 4.4.3 Processing P through SubBytes Operation 133 4.4.4 Processing P through ShiftRows Operation 134 4.4.5 Processing P through MixColumns Operation 134 4.4.6 Integral Property of AES Reduced to 2.5 Rounds 135 4.4.7 Balanced Property 136 4.4.8 Integral Property of AES Reduced to Three Rounds and Distinguishing Attack 137 4.4.9 Key Recovery Attack with Integral Cryptanalysis for Five Rounds 139 4.4.10 Higher-Order Integral Property
141 4.4.11 Key Recovery Attack with Integral Cryptanalysis for Six Rounds
143 Further Reading 147 5 Side-Channel Analysis and Fault Analysis on Block Ciphers 149 5.1 Introduction 149 5.1.1 Intrusion Degree of Physical Attacks 149 5.1.2 Passive and Active Noninvasive Physical Attacks 151 5.1.3 Cryptanalysis Compared to Side-Channel Analysis and Fault Analysis 151 5.2 Basics of Side-Channel Analysis 152 5.2.1 Side Channels of Digital Circuits 152 5.2.2 Goal of Side-Channel Analysis 154 5.2.3 General Procedures of Side-Channel Analysis 155 5.2.4 Profiling versus Non-profiling Side-Channel Analysis 156 5.2.5 Divide-and-Conquer Algorithm 157 5.3 Side-Channel Analysis on Block Ciphers 159 5.3.1 Power Consumption Measurement in Power Analysis 160 5.3.2 Simple Power Analysis and Differential Power Analysis 163 5.3.3 General Key Recovery Algorithm for DPA 164 5.3.4 Overview of Attack Targets 169 5.3.5 Single-Bit DPA Attack on AES-128 Hardware Implementations 181 5.3.6 Attacks Using HW Model on AES-128 Hardware Implementations 186 5.3.7 Attacks Using HD Model on AES-128 Hardware Implementations 192 5.3.8 Attacks with Collision Model
199 5.4 Basics of Fault Analysis 203 5.4.1 Faults Caused by Setup-Time Violations 205 5.4.2 Faults Caused by Data Alternation 208 5.5 Fault Analysis on Block Ciphers 208 5.5.1 Differential Fault Analysis 208 5.5.2 Fault Sensitivity Analysis
215 Acknowledgment 223 Bibliography 223 6 Advanced Fault Analysis with Techniques from Cryptanalysis 225 6.1 Optimized Differential Fault Analysis 226 6.1.1 Relaxing Fault Model 226 6.1.2 Four Classes of Faulty Byte Positions 227 6.1.3 Recovering Subkey Candidates of sk10 228 6.1.4 Attack Procedure 230 6.1.5 Probabilistic Fault Injection 231 6.1.6 Optimized DFA with the MixColumns Operation in the Last Round
232 6.1.7 Countermeasures against DFA and Motivation of Advanced DFA 236 6.2 Impossible Differential Fault Analysis 237 6.2.1 Fault Model 238 6.2.2 Impossible DFA with Unknown Faulty Byte Positions 238 6.2.3 Impossible DFA with Fixed Faulty Byte Position 244 6.3 Integral Differential Fault Analysis 245 6.3.1 Fault Model 246 6.3.2 Integral DFA with Bit-Fault Model 247 6.3.3 Integral DFA with Random Byte-Fault Model 251 6.3.4 Integral DFA with Noisy Random Byte-Fault Model
254 6.4 Meet-in-the-Middle Fault Analysis 260 6.4.1 Meet-in-the-Middle Attack on Block Ciphers 260 6.4.2 Meet-in-the-Middle Attack for Differential Fault Analysis 263 Further Reading 268 7 Countermeasures against Side-Channel Analysis and Fault Analysis 269 7.1 Logic-Level Hiding Countermeasures 269 7.1.1 Overview of Hiding Countermeasure with WDDL Technique 270 7.1.2 WDDL-NAND Gate 272 7.1.3 WDDL-NOR and WDDL-INV Gates 273 7.1.4 Precharge Logic for WDDL Technique 273 7.1.5 Intrinsic Fault Detection Mechanism of WDDL 276 7.2 Logic-Level Masking Countermeasures 277 7.2.1 Overview of Masking Countermeasure 277 7.2.2 Operations on Values with Boolean Masking 278 7.2.3 Re-masking and Unmasking 278 7.2.4 Masked AND Gate 279 7.2.5 Random Switching Logic 281 7.2.6 Threshold Implementation 283 7.3 Higher Level Countermeasures 285 7.3.1 Algorithm-Level Countermeasures 286 7.3.2 Architecture-Level Countermeasures 289 7.3.3 Protocol-Level Countermeasure 290 Bibliography 291 Index 293
96 4.2.11 Advanced Differential Cryptanalysis for Four-Round AES
103 4.2.12 Preventing Differential Cryptanalysis
106 4.3 Impossible Differential Cryptanalysis 110 4.3.1 Basic Concept and Definition 110 4.3.2 Impossible Differential Characteristic for 3.5-round AES 111 4.3.3 Key Recovery Attacks for Five-Round AES 114 4.3.4 Key Recovery Attacks for Seven-Round AES
123 4.4 Integral Cryptanalysis 131 4.4.1 Basic Concept 131 4.4.2 Processing P through Subkey XOR 132 4.4.3 Processing P through SubBytes Operation 133 4.4.4 Processing P through ShiftRows Operation 134 4.4.5 Processing P through MixColumns Operation 134 4.4.6 Integral Property of AES Reduced to 2.5 Rounds 135 4.4.7 Balanced Property 136 4.4.8 Integral Property of AES Reduced to Three Rounds and Distinguishing Attack 137 4.4.9 Key Recovery Attack with Integral Cryptanalysis for Five Rounds 139 4.4.10 Higher-Order Integral Property
141 4.4.11 Key Recovery Attack with Integral Cryptanalysis for Six Rounds
143 Further Reading 147 5 Side-Channel Analysis and Fault Analysis on Block Ciphers 149 5.1 Introduction 149 5.1.1 Intrusion Degree of Physical Attacks 149 5.1.2 Passive and Active Noninvasive Physical Attacks 151 5.1.3 Cryptanalysis Compared to Side-Channel Analysis and Fault Analysis 151 5.2 Basics of Side-Channel Analysis 152 5.2.1 Side Channels of Digital Circuits 152 5.2.2 Goal of Side-Channel Analysis 154 5.2.3 General Procedures of Side-Channel Analysis 155 5.2.4 Profiling versus Non-profiling Side-Channel Analysis 156 5.2.5 Divide-and-Conquer Algorithm 157 5.3 Side-Channel Analysis on Block Ciphers 159 5.3.1 Power Consumption Measurement in Power Analysis 160 5.3.2 Simple Power Analysis and Differential Power Analysis 163 5.3.3 General Key Recovery Algorithm for DPA 164 5.3.4 Overview of Attack Targets 169 5.3.5 Single-Bit DPA Attack on AES-128 Hardware Implementations 181 5.3.6 Attacks Using HW Model on AES-128 Hardware Implementations 186 5.3.7 Attacks Using HD Model on AES-128 Hardware Implementations 192 5.3.8 Attacks with Collision Model
199 5.4 Basics of Fault Analysis 203 5.4.1 Faults Caused by Setup-Time Violations 205 5.4.2 Faults Caused by Data Alternation 208 5.5 Fault Analysis on Block Ciphers 208 5.5.1 Differential Fault Analysis 208 5.5.2 Fault Sensitivity Analysis
215 Acknowledgment 223 Bibliography 223 6 Advanced Fault Analysis with Techniques from Cryptanalysis 225 6.1 Optimized Differential Fault Analysis 226 6.1.1 Relaxing Fault Model 226 6.1.2 Four Classes of Faulty Byte Positions 227 6.1.3 Recovering Subkey Candidates of sk10 228 6.1.4 Attack Procedure 230 6.1.5 Probabilistic Fault Injection 231 6.1.6 Optimized DFA with the MixColumns Operation in the Last Round
232 6.1.7 Countermeasures against DFA and Motivation of Advanced DFA 236 6.2 Impossible Differential Fault Analysis 237 6.2.1 Fault Model 238 6.2.2 Impossible DFA with Unknown Faulty Byte Positions 238 6.2.3 Impossible DFA with Fixed Faulty Byte Position 244 6.3 Integral Differential Fault Analysis 245 6.3.1 Fault Model 246 6.3.2 Integral DFA with Bit-Fault Model 247 6.3.3 Integral DFA with Random Byte-Fault Model 251 6.3.4 Integral DFA with Noisy Random Byte-Fault Model
254 6.4 Meet-in-the-Middle Fault Analysis 260 6.4.1 Meet-in-the-Middle Attack on Block Ciphers 260 6.4.2 Meet-in-the-Middle Attack for Differential Fault Analysis 263 Further Reading 268 7 Countermeasures against Side-Channel Analysis and Fault Analysis 269 7.1 Logic-Level Hiding Countermeasures 269 7.1.1 Overview of Hiding Countermeasure with WDDL Technique 270 7.1.2 WDDL-NAND Gate 272 7.1.3 WDDL-NOR and WDDL-INV Gates 273 7.1.4 Precharge Logic for WDDL Technique 273 7.1.5 Intrinsic Fault Detection Mechanism of WDDL 276 7.2 Logic-Level Masking Countermeasures 277 7.2.1 Overview of Masking Countermeasure 277 7.2.2 Operations on Values with Boolean Masking 278 7.2.3 Re-masking and Unmasking 278 7.2.4 Masked AND Gate 279 7.2.5 Random Switching Logic 281 7.2.6 Threshold Implementation 283 7.3 Higher Level Countermeasures 285 7.3.1 Algorithm-Level Countermeasures 286 7.3.2 Architecture-Level Countermeasures 289 7.3.3 Protocol-Level Countermeasure 290 Bibliography 291 Index 293