131,99 €
131,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
131,99 €
Als Download kaufen
131,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
131,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
* Delivers comprehensive coverage of key subjects in self-assembly and nanotechnology, approaching these and related topics with one unified concept. * Designed for students and professionals alike, it explores a variety of materials and situations in which the importance of self-assembly nanotechnology is growing tremendously. * Provides clear schematic illustrations to represent the mainstream principles behind each topic.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 3.17MB
Andere Kunden interessierten sich auch für
- Advanced Membrane Technology and Applications (eBook, PDF)181,99 €
- Micro Instrumentation (eBook, PDF)165,99 €
- E. Bruce NaumanChemical Reactor Design, Optimization, and Scaleup (eBook, PDF)152,99 €
- Smart Light-Responsive Materials (eBook, PDF)162,99 €
- K. L. MittalAdhesion in Microelectronics (eBook, PDF)177,99 €
- Sergey V. PasechnikLiquid Crystals (eBook, PDF)174,99 €
- Baghir A. SuleimanovNanocolloids for Petroleum Engineering (eBook, PDF)124,99 €
-
-
-
* Delivers comprehensive coverage of key subjects in self-assembly and nanotechnology, approaching these and related topics with one unified concept. * Designed for students and professionals alike, it explores a variety of materials and situations in which the importance of self-assembly nanotechnology is growing tremendously. * Provides clear schematic illustrations to represent the mainstream principles behind each topic.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 360
- Erscheinungstermin: 5. Juni 2008
- Englisch
- ISBN-13: 9780470292518
- Artikelnr.: 37291122
- Verlag: Wiley-IEEE Press
- Seitenzahl: 360
- Erscheinungstermin: 5. Juni 2008
- Englisch
- ISBN-13: 9780470292518
- Artikelnr.: 37291122
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Yoon S. Lee, PhD, is a Scientific Information Analyst at Chemical Abstracts Service (a division of the ACS) where he indexes literature and builds databases for nanoscience and nanotechnology, specifically in the area of colloid and surface chemistry. After earning his PhD from Seoul National University in South Korea, Dr. Lee performed postdoctoral research at The Ohio State University and worked as a research chemist at Cognis. He has authored several articles on self-assembly and nanotechnology.
Preface and Acknowledgments.
PART I. SELF-ASSEMBLY.
1. UNIFIED APPROACH TO SELF-ASSEMBLY.
1.1. Self-Assembly through Force Balance.
1.2. General Scheme for the Formation of Self-Assembled Aggregates.
1.3. General Scheme for Self-Assembly Process.
1.4. Concluding Remarks.
References.
2. INTERMOLECULAR AND COLLOIDAL FORCES.
2.1. Van der Waals Force.
2.2. Electrostatic Force: Electric Double-Layer.
2.3. Steric and Depletion Forces.
2.4. Solvation and Hydration Forces.
2.5. Hydrophobic Effect.
2.6. Hydrogen Bond.
References.
3. MOLECULAR SELF-ASSEMBLY IN SOLUTION I: MICELLES.
3.1. Surfactants and Micelles.
3.2. Physical Properties of Micelles.
3.3. Thermodynamics of Micellization.
3.4. Micellization versus General Scheme of Self-Assembly.
3.5. Multicomponent Micelles.
3.6. Micellar Solubilization.
3.7. Applications of Surfactants and Micelles.
References.
4. MOLECULAR SELF-ASSEMBLY IN SOLUTION II: BILAYERS, LIQUID CRYSTALS, AND
EMULSIONS.
4.1. Bilayers.
4.2. Vesicles, Liposomes, and Niosomes.
4.3. Liquid Crystals.
4.4. Emulsions.
References.
5. COLLOIDAL SELF-ASSEMBLY.
5.1. Forces Induced by Colloidal Phenomena.
5.2. Force Balance for Colloidal Self-Assembly.
5.3. General Scheme for Colloidal Self-Assembly.
5.4. Micelle-like Colloidal Self-Assembly: Packing Geometry.
5.5. Summary.
References.
6. SELF-ASSEMBLY AT INTERFACES.
6.1. General Scheme for Interfacial Self-Assembly.
6.2. Control of Intermolecular Forces at Interfaces.
6.3. Self-Assembly at the Gas-Liquid Interface.
6.4. Self-Assembly at the Liquid-Solid Interface.
6.5. Self-Assembly at the Liquid-Liquid Interface.
6.6. Self-Assembly at the Gas-Solid Interface.
6.7. Interface-Induced Chiral Self-Assembly.
References.
7. BIO-MIMETIC SELF-ASSEMBLY.
7.1. General Picture of Bio-mimetic Self-Assembly.
7.2. Force Balance Scheme for Bio-mimetic Self-Assembly.
7.3. Origin of Morphological Chirality and Diversity.
7.4. Symmetric Bio-mimetic Self-Assembled Aggregates.
7.5. Gels: Networked Bio-mimetic Self-Assembled Aggregates.
7.6. Properties of Bio-mimetic Self-Assembled Aggregates.
7.7. Future Issues.
References.
PART II. NANOTECHNOLOGY.
8. IMPLICATIONS OF SELF-ASSEMBLY FOR NANOTECHNOLOGY.
8.1. General Concepts and Approach to Nanotechnology.
8.2. Self-Assembly and Nanotechnology Share the Same Building Units.
8.3. Self-Assembly and Nanotechnology Are Governed by the Same Forces.
8.4. Self-Assembly versus Manipulation for the Construction of
Nanostructures.
8.5. Self-Aggregates and Nanotechnology Share the Same General Assembly
Principles.
8.6. Concluding Remarks.
References.
9. NANOSTRUCTURED MATERIALS.
9.1. What Are Nanostructured Materials?
9.2. Intermolecular Forces During the Formation of Nanostructured
Materials.
9.3. Sol-Gel Chemistry.
9.4. General Self-Assembly Schemes for the Formation of Nanostructured
Materials.
9.5. Micro-, Meso-, and Macroporous Materials.
9.6. Mesostructured and Mesoporous Materials.
9.7. Organic-Inorganic Hybrid Mesostructured and Mesoporous Materials.
9.8. Microporous and Macroporous Materials.
9.9. Applications of Nanostructured and Nanoporous Materials.
9.10. Summary and Future Issues.
References.
10. NANOPARTICLES: METALS, SEMICONDUCTORS, AND OXIDES.
10.1. What are Nanoparticles?
10.2. Intermolecular Forces During the Synthesis of Nanoparticles.
10.3. Synthesis of Nanoparticles.
10.4. Properties of Nanoparticles.
10.5. Applications of Nanoparticles.
10.6. Summary and Future Issues.
References.
11. NANOSTRUCTURED FILMS.
11.1. What Is Nanostructured Film?
11.2. General Scheme for Nanostructured Films.
11.3. Preparation and Structural Control of Nanostructured Films.
11.4. Properties and Applications of Nanostructured Films.
11.5. Summary and Future Issues.
References.
12. NANOASSEMBLY BY EXTERNAL FORCES.
12.1. Force Balance and the General Scheme of Self-Assembly Under External
Forces.
12.2. Colloidal Self-Assembly Under External Forces.
12.3. Molecular Self-Assembly Under External Forces.
12.4. Applications of Colloidal Aggregates.
12.5. Summary and Future Issues.
References.
13. NANOFABRICATION.
13.1. Self-Assembly and Nanofabrication.
13.2. Unit Fabrications.
13.3. Nanointegrated Systems.
13.4. Summary and Future Issues.
References.
14. NANODEVICES AND NANOMACHINES.
14.1. General Scheme of Nanodevices.
14.2. Nanocomponents: Building Units for Nanodevices.
14.3. Three Element Motions: Force Balance at Work.
14.4. Unit Operations.
14.5. Nanodevices: Fabricated Nanocomponents to Operate.
14.7. Summary and Future Issues.
References.
Index.
PART I. SELF-ASSEMBLY.
1. UNIFIED APPROACH TO SELF-ASSEMBLY.
1.1. Self-Assembly through Force Balance.
1.2. General Scheme for the Formation of Self-Assembled Aggregates.
1.3. General Scheme for Self-Assembly Process.
1.4. Concluding Remarks.
References.
2. INTERMOLECULAR AND COLLOIDAL FORCES.
2.1. Van der Waals Force.
2.2. Electrostatic Force: Electric Double-Layer.
2.3. Steric and Depletion Forces.
2.4. Solvation and Hydration Forces.
2.5. Hydrophobic Effect.
2.6. Hydrogen Bond.
References.
3. MOLECULAR SELF-ASSEMBLY IN SOLUTION I: MICELLES.
3.1. Surfactants and Micelles.
3.2. Physical Properties of Micelles.
3.3. Thermodynamics of Micellization.
3.4. Micellization versus General Scheme of Self-Assembly.
3.5. Multicomponent Micelles.
3.6. Micellar Solubilization.
3.7. Applications of Surfactants and Micelles.
References.
4. MOLECULAR SELF-ASSEMBLY IN SOLUTION II: BILAYERS, LIQUID CRYSTALS, AND
EMULSIONS.
4.1. Bilayers.
4.2. Vesicles, Liposomes, and Niosomes.
4.3. Liquid Crystals.
4.4. Emulsions.
References.
5. COLLOIDAL SELF-ASSEMBLY.
5.1. Forces Induced by Colloidal Phenomena.
5.2. Force Balance for Colloidal Self-Assembly.
5.3. General Scheme for Colloidal Self-Assembly.
5.4. Micelle-like Colloidal Self-Assembly: Packing Geometry.
5.5. Summary.
References.
6. SELF-ASSEMBLY AT INTERFACES.
6.1. General Scheme for Interfacial Self-Assembly.
6.2. Control of Intermolecular Forces at Interfaces.
6.3. Self-Assembly at the Gas-Liquid Interface.
6.4. Self-Assembly at the Liquid-Solid Interface.
6.5. Self-Assembly at the Liquid-Liquid Interface.
6.6. Self-Assembly at the Gas-Solid Interface.
6.7. Interface-Induced Chiral Self-Assembly.
References.
7. BIO-MIMETIC SELF-ASSEMBLY.
7.1. General Picture of Bio-mimetic Self-Assembly.
7.2. Force Balance Scheme for Bio-mimetic Self-Assembly.
7.3. Origin of Morphological Chirality and Diversity.
7.4. Symmetric Bio-mimetic Self-Assembled Aggregates.
7.5. Gels: Networked Bio-mimetic Self-Assembled Aggregates.
7.6. Properties of Bio-mimetic Self-Assembled Aggregates.
7.7. Future Issues.
References.
PART II. NANOTECHNOLOGY.
8. IMPLICATIONS OF SELF-ASSEMBLY FOR NANOTECHNOLOGY.
8.1. General Concepts and Approach to Nanotechnology.
8.2. Self-Assembly and Nanotechnology Share the Same Building Units.
8.3. Self-Assembly and Nanotechnology Are Governed by the Same Forces.
8.4. Self-Assembly versus Manipulation for the Construction of
Nanostructures.
8.5. Self-Aggregates and Nanotechnology Share the Same General Assembly
Principles.
8.6. Concluding Remarks.
References.
9. NANOSTRUCTURED MATERIALS.
9.1. What Are Nanostructured Materials?
9.2. Intermolecular Forces During the Formation of Nanostructured
Materials.
9.3. Sol-Gel Chemistry.
9.4. General Self-Assembly Schemes for the Formation of Nanostructured
Materials.
9.5. Micro-, Meso-, and Macroporous Materials.
9.6. Mesostructured and Mesoporous Materials.
9.7. Organic-Inorganic Hybrid Mesostructured and Mesoporous Materials.
9.8. Microporous and Macroporous Materials.
9.9. Applications of Nanostructured and Nanoporous Materials.
9.10. Summary and Future Issues.
References.
10. NANOPARTICLES: METALS, SEMICONDUCTORS, AND OXIDES.
10.1. What are Nanoparticles?
10.2. Intermolecular Forces During the Synthesis of Nanoparticles.
10.3. Synthesis of Nanoparticles.
10.4. Properties of Nanoparticles.
10.5. Applications of Nanoparticles.
10.6. Summary and Future Issues.
References.
11. NANOSTRUCTURED FILMS.
11.1. What Is Nanostructured Film?
11.2. General Scheme for Nanostructured Films.
11.3. Preparation and Structural Control of Nanostructured Films.
11.4. Properties and Applications of Nanostructured Films.
11.5. Summary and Future Issues.
References.
12. NANOASSEMBLY BY EXTERNAL FORCES.
12.1. Force Balance and the General Scheme of Self-Assembly Under External
Forces.
12.2. Colloidal Self-Assembly Under External Forces.
12.3. Molecular Self-Assembly Under External Forces.
12.4. Applications of Colloidal Aggregates.
12.5. Summary and Future Issues.
References.
13. NANOFABRICATION.
13.1. Self-Assembly and Nanofabrication.
13.2. Unit Fabrications.
13.3. Nanointegrated Systems.
13.4. Summary and Future Issues.
References.
14. NANODEVICES AND NANOMACHINES.
14.1. General Scheme of Nanodevices.
14.2. Nanocomponents: Building Units for Nanodevices.
14.3. Three Element Motions: Force Balance at Work.
14.4. Unit Operations.
14.5. Nanodevices: Fabricated Nanocomponents to Operate.
14.7. Summary and Future Issues.
References.
Index.
Preface and Acknowledgments.
PART I. SELF-ASSEMBLY.
1. UNIFIED APPROACH TO SELF-ASSEMBLY.
1.1. Self-Assembly through Force Balance.
1.2. General Scheme for the Formation of Self-Assembled Aggregates.
1.3. General Scheme for Self-Assembly Process.
1.4. Concluding Remarks.
References.
2. INTERMOLECULAR AND COLLOIDAL FORCES.
2.1. Van der Waals Force.
2.2. Electrostatic Force: Electric Double-Layer.
2.3. Steric and Depletion Forces.
2.4. Solvation and Hydration Forces.
2.5. Hydrophobic Effect.
2.6. Hydrogen Bond.
References.
3. MOLECULAR SELF-ASSEMBLY IN SOLUTION I: MICELLES.
3.1. Surfactants and Micelles.
3.2. Physical Properties of Micelles.
3.3. Thermodynamics of Micellization.
3.4. Micellization versus General Scheme of Self-Assembly.
3.5. Multicomponent Micelles.
3.6. Micellar Solubilization.
3.7. Applications of Surfactants and Micelles.
References.
4. MOLECULAR SELF-ASSEMBLY IN SOLUTION II: BILAYERS, LIQUID CRYSTALS, AND
EMULSIONS.
4.1. Bilayers.
4.2. Vesicles, Liposomes, and Niosomes.
4.3. Liquid Crystals.
4.4. Emulsions.
References.
5. COLLOIDAL SELF-ASSEMBLY.
5.1. Forces Induced by Colloidal Phenomena.
5.2. Force Balance for Colloidal Self-Assembly.
5.3. General Scheme for Colloidal Self-Assembly.
5.4. Micelle-like Colloidal Self-Assembly: Packing Geometry.
5.5. Summary.
References.
6. SELF-ASSEMBLY AT INTERFACES.
6.1. General Scheme for Interfacial Self-Assembly.
6.2. Control of Intermolecular Forces at Interfaces.
6.3. Self-Assembly at the Gas-Liquid Interface.
6.4. Self-Assembly at the Liquid-Solid Interface.
6.5. Self-Assembly at the Liquid-Liquid Interface.
6.6. Self-Assembly at the Gas-Solid Interface.
6.7. Interface-Induced Chiral Self-Assembly.
References.
7. BIO-MIMETIC SELF-ASSEMBLY.
7.1. General Picture of Bio-mimetic Self-Assembly.
7.2. Force Balance Scheme for Bio-mimetic Self-Assembly.
7.3. Origin of Morphological Chirality and Diversity.
7.4. Symmetric Bio-mimetic Self-Assembled Aggregates.
7.5. Gels: Networked Bio-mimetic Self-Assembled Aggregates.
7.6. Properties of Bio-mimetic Self-Assembled Aggregates.
7.7. Future Issues.
References.
PART II. NANOTECHNOLOGY.
8. IMPLICATIONS OF SELF-ASSEMBLY FOR NANOTECHNOLOGY.
8.1. General Concepts and Approach to Nanotechnology.
8.2. Self-Assembly and Nanotechnology Share the Same Building Units.
8.3. Self-Assembly and Nanotechnology Are Governed by the Same Forces.
8.4. Self-Assembly versus Manipulation for the Construction of
Nanostructures.
8.5. Self-Aggregates and Nanotechnology Share the Same General Assembly
Principles.
8.6. Concluding Remarks.
References.
9. NANOSTRUCTURED MATERIALS.
9.1. What Are Nanostructured Materials?
9.2. Intermolecular Forces During the Formation of Nanostructured
Materials.
9.3. Sol-Gel Chemistry.
9.4. General Self-Assembly Schemes for the Formation of Nanostructured
Materials.
9.5. Micro-, Meso-, and Macroporous Materials.
9.6. Mesostructured and Mesoporous Materials.
9.7. Organic-Inorganic Hybrid Mesostructured and Mesoporous Materials.
9.8. Microporous and Macroporous Materials.
9.9. Applications of Nanostructured and Nanoporous Materials.
9.10. Summary and Future Issues.
References.
10. NANOPARTICLES: METALS, SEMICONDUCTORS, AND OXIDES.
10.1. What are Nanoparticles?
10.2. Intermolecular Forces During the Synthesis of Nanoparticles.
10.3. Synthesis of Nanoparticles.
10.4. Properties of Nanoparticles.
10.5. Applications of Nanoparticles.
10.6. Summary and Future Issues.
References.
11. NANOSTRUCTURED FILMS.
11.1. What Is Nanostructured Film?
11.2. General Scheme for Nanostructured Films.
11.3. Preparation and Structural Control of Nanostructured Films.
11.4. Properties and Applications of Nanostructured Films.
11.5. Summary and Future Issues.
References.
12. NANOASSEMBLY BY EXTERNAL FORCES.
12.1. Force Balance and the General Scheme of Self-Assembly Under External
Forces.
12.2. Colloidal Self-Assembly Under External Forces.
12.3. Molecular Self-Assembly Under External Forces.
12.4. Applications of Colloidal Aggregates.
12.5. Summary and Future Issues.
References.
13. NANOFABRICATION.
13.1. Self-Assembly and Nanofabrication.
13.2. Unit Fabrications.
13.3. Nanointegrated Systems.
13.4. Summary and Future Issues.
References.
14. NANODEVICES AND NANOMACHINES.
14.1. General Scheme of Nanodevices.
14.2. Nanocomponents: Building Units for Nanodevices.
14.3. Three Element Motions: Force Balance at Work.
14.4. Unit Operations.
14.5. Nanodevices: Fabricated Nanocomponents to Operate.
14.7. Summary and Future Issues.
References.
Index.
PART I. SELF-ASSEMBLY.
1. UNIFIED APPROACH TO SELF-ASSEMBLY.
1.1. Self-Assembly through Force Balance.
1.2. General Scheme for the Formation of Self-Assembled Aggregates.
1.3. General Scheme for Self-Assembly Process.
1.4. Concluding Remarks.
References.
2. INTERMOLECULAR AND COLLOIDAL FORCES.
2.1. Van der Waals Force.
2.2. Electrostatic Force: Electric Double-Layer.
2.3. Steric and Depletion Forces.
2.4. Solvation and Hydration Forces.
2.5. Hydrophobic Effect.
2.6. Hydrogen Bond.
References.
3. MOLECULAR SELF-ASSEMBLY IN SOLUTION I: MICELLES.
3.1. Surfactants and Micelles.
3.2. Physical Properties of Micelles.
3.3. Thermodynamics of Micellization.
3.4. Micellization versus General Scheme of Self-Assembly.
3.5. Multicomponent Micelles.
3.6. Micellar Solubilization.
3.7. Applications of Surfactants and Micelles.
References.
4. MOLECULAR SELF-ASSEMBLY IN SOLUTION II: BILAYERS, LIQUID CRYSTALS, AND
EMULSIONS.
4.1. Bilayers.
4.2. Vesicles, Liposomes, and Niosomes.
4.3. Liquid Crystals.
4.4. Emulsions.
References.
5. COLLOIDAL SELF-ASSEMBLY.
5.1. Forces Induced by Colloidal Phenomena.
5.2. Force Balance for Colloidal Self-Assembly.
5.3. General Scheme for Colloidal Self-Assembly.
5.4. Micelle-like Colloidal Self-Assembly: Packing Geometry.
5.5. Summary.
References.
6. SELF-ASSEMBLY AT INTERFACES.
6.1. General Scheme for Interfacial Self-Assembly.
6.2. Control of Intermolecular Forces at Interfaces.
6.3. Self-Assembly at the Gas-Liquid Interface.
6.4. Self-Assembly at the Liquid-Solid Interface.
6.5. Self-Assembly at the Liquid-Liquid Interface.
6.6. Self-Assembly at the Gas-Solid Interface.
6.7. Interface-Induced Chiral Self-Assembly.
References.
7. BIO-MIMETIC SELF-ASSEMBLY.
7.1. General Picture of Bio-mimetic Self-Assembly.
7.2. Force Balance Scheme for Bio-mimetic Self-Assembly.
7.3. Origin of Morphological Chirality and Diversity.
7.4. Symmetric Bio-mimetic Self-Assembled Aggregates.
7.5. Gels: Networked Bio-mimetic Self-Assembled Aggregates.
7.6. Properties of Bio-mimetic Self-Assembled Aggregates.
7.7. Future Issues.
References.
PART II. NANOTECHNOLOGY.
8. IMPLICATIONS OF SELF-ASSEMBLY FOR NANOTECHNOLOGY.
8.1. General Concepts and Approach to Nanotechnology.
8.2. Self-Assembly and Nanotechnology Share the Same Building Units.
8.3. Self-Assembly and Nanotechnology Are Governed by the Same Forces.
8.4. Self-Assembly versus Manipulation for the Construction of
Nanostructures.
8.5. Self-Aggregates and Nanotechnology Share the Same General Assembly
Principles.
8.6. Concluding Remarks.
References.
9. NANOSTRUCTURED MATERIALS.
9.1. What Are Nanostructured Materials?
9.2. Intermolecular Forces During the Formation of Nanostructured
Materials.
9.3. Sol-Gel Chemistry.
9.4. General Self-Assembly Schemes for the Formation of Nanostructured
Materials.
9.5. Micro-, Meso-, and Macroporous Materials.
9.6. Mesostructured and Mesoporous Materials.
9.7. Organic-Inorganic Hybrid Mesostructured and Mesoporous Materials.
9.8. Microporous and Macroporous Materials.
9.9. Applications of Nanostructured and Nanoporous Materials.
9.10. Summary and Future Issues.
References.
10. NANOPARTICLES: METALS, SEMICONDUCTORS, AND OXIDES.
10.1. What are Nanoparticles?
10.2. Intermolecular Forces During the Synthesis of Nanoparticles.
10.3. Synthesis of Nanoparticles.
10.4. Properties of Nanoparticles.
10.5. Applications of Nanoparticles.
10.6. Summary and Future Issues.
References.
11. NANOSTRUCTURED FILMS.
11.1. What Is Nanostructured Film?
11.2. General Scheme for Nanostructured Films.
11.3. Preparation and Structural Control of Nanostructured Films.
11.4. Properties and Applications of Nanostructured Films.
11.5. Summary and Future Issues.
References.
12. NANOASSEMBLY BY EXTERNAL FORCES.
12.1. Force Balance and the General Scheme of Self-Assembly Under External
Forces.
12.2. Colloidal Self-Assembly Under External Forces.
12.3. Molecular Self-Assembly Under External Forces.
12.4. Applications of Colloidal Aggregates.
12.5. Summary and Future Issues.
References.
13. NANOFABRICATION.
13.1. Self-Assembly and Nanofabrication.
13.2. Unit Fabrications.
13.3. Nanointegrated Systems.
13.4. Summary and Future Issues.
References.
14. NANODEVICES AND NANOMACHINES.
14.1. General Scheme of Nanodevices.
14.2. Nanocomponents: Building Units for Nanodevices.
14.3. Three Element Motions: Force Balance at Work.
14.4. Unit Operations.
14.5. Nanodevices: Fabricated Nanocomponents to Operate.
14.7. Summary and Future Issues.
References.
Index.