188,95 €
188,95 €
inkl. MwSt.
Sofort per Download lieferbar
94 °P sammeln
188,95 €
Als Download kaufen
188,95 €
inkl. MwSt.
Sofort per Download lieferbar
94 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
188,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
94 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Semimartingale Theory and Stochastic Calculus is a self-contained and comprehensive book that will be valuable for research mathematicians, statisticians, engineers, and students.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.32MB
Andere Kunden interessierten sich auch für
- Asha Seth KapadiaMathematical Statistics With Applications (eBook, ePUB)46,95 €
- D. R. CoxPoint Processes (eBook, ePUB)183,95 €
- Handbook of Bayesian Variable Selection (eBook, ePUB)61,95 €
- Felix AbramovichStatistical Theory (eBook, ePUB)81,95 €
- D. R. CoxQueues (eBook, ePUB)125,95 €
- Silvia BacciIntroduction to Statistical Decision Theory (eBook, ePUB)48,95 €
- Silvelyn ZwanzigBayesian Inference (eBook, ePUB)65,95 €
-
-
-
Semimartingale Theory and Stochastic Calculus is a self-contained and comprehensive book that will be valuable for research mathematicians, statisticians, engineers, and students.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 400
- Erscheinungstermin: 9. Juli 2019
- Englisch
- ISBN-13: 9781351416955
- Artikelnr.: 54910200
- Verlag: Taylor & Francis
- Seitenzahl: 400
- Erscheinungstermin: 9. Juli 2019
- Englisch
- ISBN-13: 9781351416955
- Artikelnr.: 54910200
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
He Sheng-Wu, Jia-Gang Wang, Jia-an Yan
PRELIMINARIES. Monotone Class Theorems. Uniform Integrability. Essential
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte
PRELIMINARIES. Monotone Class Theorems. Uniform Integrability. Essential
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte
Supremum. The Generalization of Conditional Expectation. Analytic Sets and
Choquet Capacity. Lebesgue-Stieltjes Integrals. CLASSICAL MARTINGALE
THEORY. Elementary Inequalities. Convergence Theorems. Decomposition
Theorems for Supermartingales. Doob's Stopping Theorem. Martingales with
Continuous Time. Processes with Independent Increments. PROCESSES AND
STOPPING TIMES. Stopping Times. Progressive Measurable, Optional and
Predictable Processes. Predictable and Accessible Times. Processes with
Finite Variation. Changes of Time. SECTION THEROREMS AND THEIR
APPLICATIONS. Section Theorems. A.s. Foretellability of Predicatable Times.
Totally Inaccessible Times. Complete Filtrations and the Usual Conditions.
Applications to Martingales. PROJECTIONS OF PROCESSES. Projections of
Measurable Processes. Dual Projections of Increasing Processes.
Applications to Stopping Times and Processes. Doob-Meyer Decomposition
Theorem. Filtrations of Discrete Type. MARTINGALES WITH INTEGRABLE
VARIATION AND SQUARE INTEGRABLE MARTINGALES. Martingales with Integrable
Variation. Stable Subspaces of Square Integrable Martingales. The Structure
of Purely Discontinuous Square Integrable Martingales. Quadratic Variation.
LOCAL MARTINGALES. The Localization of Classes of Processes. The
Decomposition of Local Martingales. The Characterization of Jumps of Local
Martingales. SEMIMARTINGALES AND QUASIMARTINGALES. Semimartingales and
Special Semimartingales. Quasimartingales and Their Rao Decompositions.
Semimartingales on Stochastic Sets of Interval Type. Convergence Theorems
for Semimartingales. STOCHASTIC INTEGRALS. Stochastic Integrals of
Predictable Processes with Respect to Local Martingales. Compensated
Stochastic Integrals of Progressive Processes with Respect to Local
Martingales. Stochastic Integrals of Predictable Processes with Respect to
Semimartingales. Lenglart's Inequality and Convergence Theorems for
Stochastic Inte