52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Separate and Joint Continuity presents and summarises the main ideas and theorems that have been developed on this topic, which lies at the interface between General Topology and Functional Analysis (and the geometry of Banach spaces in particular). The book offers detailed, self-contained proofs of many of the key results.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 2.88MB
Andere Kunden interessierten sich auch für
- Jiling CaoSeparate and Joint Continuity (eBook, ePUB)52,95 €
- Encyclopedia of Knot Theory (eBook, PDF)51,95 €
- Anca CapatinaVariational Inequalities and Frictional Contact Problems (eBook, PDF)40,95 €
- -25%11Werner BallmannEinführung in die Geometrie und Topologie (eBook, PDF)14,99 €
- Clifford Henry TaubesDifferential Geometry (eBook, PDF)22,95 €
- Algebraic Topology and Related Topics (eBook, PDF)121,95 €
- Tej Bahadur SinghIntroduction to Topology (eBook, PDF)40,95 €
-
-
-
Separate and Joint Continuity presents and summarises the main ideas and theorems that have been developed on this topic, which lies at the interface between General Topology and Functional Analysis (and the geometry of Banach spaces in particular). The book offers detailed, self-contained proofs of many of the key results.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 170
- Erscheinungstermin: 9. Juli 2024
- Englisch
- ISBN-13: 9781040043042
- Artikelnr.: 70655608
- Verlag: Taylor & Francis
- Seitenzahl: 170
- Erscheinungstermin: 9. Juli 2024
- Englisch
- ISBN-13: 9781040043042
- Artikelnr.: 70655608
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jiling Cao is a Professor of Mathematics at Auckland University of Technology. He received his PhD from The University of Auckland in 1999. He has published over 80 research articles in the areas of general topology, functional analysis, mathematical economics, and financial mathematics. He is a Fellow of the New Zealand Mathematics Society and holds visiting professorship positions at several other universities. From 2015 to present, he has been the Head of the Department of Mathematical Science at Auckland University of Technology.
Warren B. Moors is a Professor of Mathematics at the University of Auckland. He has published over 85 research articles in the areas of: functional analysis, general topology and optimisation. He is a Fellow of both the Australian Mathematical Society and the New Zealand Mathematical Society and is the recipient of the 2001 New Zealand Mathematical Society Research Award. He received his PhD from the University of Newcastle in 1992.
Warren B. Moors is a Professor of Mathematics at the University of Auckland. He has published over 85 research articles in the areas of: functional analysis, general topology and optimisation. He is a Fellow of both the Australian Mathematical Society and the New Zealand Mathematical Society and is the recipient of the 2001 New Zealand Mathematical Society Research Award. He received his PhD from the University of Newcastle in 1992.
1. Introduction. 1.1. Background. 1.2. Baire and Related Spaces. 1.3.
Quasicontinuous Functions. 1.4. Set-Valued Mappings. 1.5. Basics of
Function Spaces. 1.6. Concepts in Banach Spaces. 1.7. Commentary and
Exercises. 2. Fundamental Results. 2.1. Fundamental Questions. 2.2. First
Countable Spaces. 2.3. q-Spaces. 2.4. Second Countable Spaces. 2.5.
Separately Quasicontinuous Functions. 6. Piotrowski's Theorem. 2.7.
Talagrand's Problem. 2.8. Commentary and Exercises. 3. Continuity of Group
Actions and Operations. 3.1. Semitopological and Paratopological Groups.
3.2. ¿-Baire Spaces. 3.3. Continuity of Group Actions. 3.4. Some
Counterexamples. 3.5. Miscellaneous Applications. 3.6. Commentary and
Exercises. 4. Namioka Theorem and Related Spaces. 4.1. Namioka Theorem.
4.2. Namioka Theorem - a Functional Analytic Proof. 4.3. Namioka Spaces.
4.4. Co-Namioka Spaces. 4.5. Commentary and Exercises. 5. Various
Applications. 5.1. Point of Continuity Properties. 5.2. Minimal USCO
Mappings. 5.3. Ryll-Nardzewski Fixed-Point Theorem. 5.4. Differentiability
of Continuous Convex Functions. 5.5. Applications in Variational Analysis.
6. Future Directions and Open Problems. 6.1. Topologies of Separate and
Joint Continuity. 6.2. Semitopological and Paratopological Groups. 6.3.
Namioka Spaces. 6.4. Co-Namioka and Related Spaces. 6.5. Baire
Measurability of Separately Continuous Functions. 6.6. Sets of
Discontinuity Points of Separately Continuous Functions. 6.7. Various
Maslyuchenko Spaces.
Quasicontinuous Functions. 1.4. Set-Valued Mappings. 1.5. Basics of
Function Spaces. 1.6. Concepts in Banach Spaces. 1.7. Commentary and
Exercises. 2. Fundamental Results. 2.1. Fundamental Questions. 2.2. First
Countable Spaces. 2.3. q-Spaces. 2.4. Second Countable Spaces. 2.5.
Separately Quasicontinuous Functions. 6. Piotrowski's Theorem. 2.7.
Talagrand's Problem. 2.8. Commentary and Exercises. 3. Continuity of Group
Actions and Operations. 3.1. Semitopological and Paratopological Groups.
3.2. ¿-Baire Spaces. 3.3. Continuity of Group Actions. 3.4. Some
Counterexamples. 3.5. Miscellaneous Applications. 3.6. Commentary and
Exercises. 4. Namioka Theorem and Related Spaces. 4.1. Namioka Theorem.
4.2. Namioka Theorem - a Functional Analytic Proof. 4.3. Namioka Spaces.
4.4. Co-Namioka Spaces. 4.5. Commentary and Exercises. 5. Various
Applications. 5.1. Point of Continuity Properties. 5.2. Minimal USCO
Mappings. 5.3. Ryll-Nardzewski Fixed-Point Theorem. 5.4. Differentiability
of Continuous Convex Functions. 5.5. Applications in Variational Analysis.
6. Future Directions and Open Problems. 6.1. Topologies of Separate and
Joint Continuity. 6.2. Semitopological and Paratopological Groups. 6.3.
Namioka Spaces. 6.4. Co-Namioka and Related Spaces. 6.5. Baire
Measurability of Separately Continuous Functions. 6.6. Sets of
Discontinuity Points of Separately Continuous Functions. 6.7. Various
Maslyuchenko Spaces.
1. Introduction. 1.1. Background. 1.2. Baire and Related Spaces. 1.3.
Quasicontinuous Functions. 1.4. Set-Valued Mappings. 1.5. Basics of
Function Spaces. 1.6. Concepts in Banach Spaces. 1.7. Commentary and
Exercises. 2. Fundamental Results. 2.1. Fundamental Questions. 2.2. First
Countable Spaces. 2.3. q-Spaces. 2.4. Second Countable Spaces. 2.5.
Separately Quasicontinuous Functions. 6. Piotrowski's Theorem. 2.7.
Talagrand's Problem. 2.8. Commentary and Exercises. 3. Continuity of Group
Actions and Operations. 3.1. Semitopological and Paratopological Groups.
3.2. ¿-Baire Spaces. 3.3. Continuity of Group Actions. 3.4. Some
Counterexamples. 3.5. Miscellaneous Applications. 3.6. Commentary and
Exercises. 4. Namioka Theorem and Related Spaces. 4.1. Namioka Theorem.
4.2. Namioka Theorem - a Functional Analytic Proof. 4.3. Namioka Spaces.
4.4. Co-Namioka Spaces. 4.5. Commentary and Exercises. 5. Various
Applications. 5.1. Point of Continuity Properties. 5.2. Minimal USCO
Mappings. 5.3. Ryll-Nardzewski Fixed-Point Theorem. 5.4. Differentiability
of Continuous Convex Functions. 5.5. Applications in Variational Analysis.
6. Future Directions and Open Problems. 6.1. Topologies of Separate and
Joint Continuity. 6.2. Semitopological and Paratopological Groups. 6.3.
Namioka Spaces. 6.4. Co-Namioka and Related Spaces. 6.5. Baire
Measurability of Separately Continuous Functions. 6.6. Sets of
Discontinuity Points of Separately Continuous Functions. 6.7. Various
Maslyuchenko Spaces.
Quasicontinuous Functions. 1.4. Set-Valued Mappings. 1.5. Basics of
Function Spaces. 1.6. Concepts in Banach Spaces. 1.7. Commentary and
Exercises. 2. Fundamental Results. 2.1. Fundamental Questions. 2.2. First
Countable Spaces. 2.3. q-Spaces. 2.4. Second Countable Spaces. 2.5.
Separately Quasicontinuous Functions. 6. Piotrowski's Theorem. 2.7.
Talagrand's Problem. 2.8. Commentary and Exercises. 3. Continuity of Group
Actions and Operations. 3.1. Semitopological and Paratopological Groups.
3.2. ¿-Baire Spaces. 3.3. Continuity of Group Actions. 3.4. Some
Counterexamples. 3.5. Miscellaneous Applications. 3.6. Commentary and
Exercises. 4. Namioka Theorem and Related Spaces. 4.1. Namioka Theorem.
4.2. Namioka Theorem - a Functional Analytic Proof. 4.3. Namioka Spaces.
4.4. Co-Namioka Spaces. 4.5. Commentary and Exercises. 5. Various
Applications. 5.1. Point of Continuity Properties. 5.2. Minimal USCO
Mappings. 5.3. Ryll-Nardzewski Fixed-Point Theorem. 5.4. Differentiability
of Continuous Convex Functions. 5.5. Applications in Variational Analysis.
6. Future Directions and Open Problems. 6.1. Topologies of Separate and
Joint Continuity. 6.2. Semitopological and Paratopological Groups. 6.3.
Namioka Spaces. 6.4. Co-Namioka and Related Spaces. 6.5. Baire
Measurability of Separately Continuous Functions. 6.6. Sets of
Discontinuity Points of Separately Continuous Functions. 6.7. Various
Maslyuchenko Spaces.