36,95 €
36,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
18 °P sammeln
36,95 €
36,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
18 °P sammeln
Als Download kaufen
36,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
18 °P sammeln
Jetzt verschenken
36,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
18 °P sammeln
  • Format: PDF

This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 12.56MB
  • FamilySharing(5)
Produktbeschreibung
This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ranjan Roy (1947-2020) was the Ralph C. Huffer Professor of Mathematics and Astronomy at Beloit College, where he was a faculty member for 38 years. Roy published papers and reviews on Riemann surfaces, differential equations, fluid mechanics, Kleinian groups, and the development of mathematics. He was an award-winning educator, having received the Allendoerfer Prize, the Wisconsin MAA teaching award, and the MAA Haimo Award for Distinguished Mathematics Teaching and was twice named Teacher of the Year at Beloit College. He coauthored Special Functions (2001) with George Andrews and Richard Askey and coauthored chapters in the NIST Handbook of Mathematical Functions (2010); he also authored Elliptic and Modular Functions from Gauss to Dedekind to Hecke (2017) and the first edition of this book, Sources in the Development of Mathematics (2011).