48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This accessible textbook offers a novel, concept-led approach to superconducting electronics, using the COMSOL Multiphysics software to help describe fundamental principles in an intuitive manner.
Based on a course taught by the author and aimed primarily at engineering students, the book explains concepts effectively and efficiently, uncovering the "shortcut" to understanding each topic, enabling readers to quickly grasp the underlying essence. The book is divided into two main parts; the first part provides a general introduction to key topics encountered in superconductivity, illustrated…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 11.01MB
Produktbeschreibung
This accessible textbook offers a novel, concept-led approach to superconducting electronics, using the COMSOL Multiphysics software to help describe fundamental principles in an intuitive manner.

Based on a course taught by the author and aimed primarily at engineering students, the book explains concepts effectively and efficiently, uncovering the "shortcut" to understanding each topic, enabling readers to quickly grasp the underlying essence. The book is divided into two main parts; the first part provides a general introduction to key topics encountered in superconductivity, illustrated using COMSOL simulations based on time-dependent Ginzburg-Landau equations and avoiding any deeply mathematical derivations. It includes numerous worked examples and problem sets with tips and solutions.

The second part of the book is more conventional in nature, providing detailed derivations of the basic equations from first principles. This part covers more advanced topics, including the BCS-Gor'kov-Eliashberg approach to equilibrium properties of superconductors, the derivation of kinetic equations for nonequilibrium superconductors, and the derivation of time-dependent Ginzburg-Landau equations, used as the basis for COMSOL modeling in the first part.

Supported throughout by an extensive library of COMSOL Multiphysics animations, the book serves as a uniquely accessible introduction to the field for engineers and others with a less rigorous background in physics and mathematics. However, it also features more detailed mathematical background for those wishing to delve further into the subject.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Armen Gulian is Senior Research Scientist and Director of Chapman University's Advanced Physics Laboratory, located in Burtonsville, Maryland. His scientific career began with a Ph.D. and postdoctoral research on non-equilibrium phenomena in superconductors and superfluids within the group of Nobel Laureate Vitaly Ginzburg.

Before setting up the Advanced Physics Laboratory for Chapman, Dr. Gulian founded the Laboratory of High-Temperature Superconductivity at the Physics Research Institute, Armenia - overseeing the world's first observation of phase-slip centers in high-temperature superconductors. Dr. Gulian has also worked on the development of quantum detectors at the US Naval Research Laboratory, where he proposed a theoretical design and performed experimental demonstration of novel cryogenic detector prototypes for X-ray/UV single-photons.

Dr. Gulian's many publications include those on prediction of the "phonon deficit" effect (important for development of electronic coolers); the theory of superconducting quantum generators (potential application for terahertz radiation imaging and high-resolution acoustic imaging); and the prediction of interference current at the description of superconductivity based on time-dependent Ginzburg-Landau equations (important for superconducting electronics).