Simplified LRFD Bridge Design (eBook, PDF)
Redaktion: Kim, Jai B.; Eberle, Jonathan; Kim, Robert H.
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Simplified LRFD Bridge Design (eBook, PDF)
Redaktion: Kim, Jai B.; Eberle, Jonathan; Kim, Robert H.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Helping readers prepare for the civil and structural PE exam, this book presents numerous design examples that serve as a comprehensive, step-by-step guide to basic bridge design using the AASHTO LRFD Bridge Design Specifications, Fifth Edition.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 6.59MB
Andere Kunden interessierten sich auch für
- Nawari O. NawariBuilding Information Modeling (eBook, PDF)125,95 €
- Syed Mehdi AshrafStructural Building Design (eBook, PDF)141,95 €
- Avijit ChaubeyPractical Concrete Mix Design (eBook, PDF)131,95 €
- Björn ÅkessonFatigue Life of Riveted Steel Bridges (eBook, PDF)65,95 €
- Nawari O. NawariBuilding Information Modeling (eBook, PDF)156,95 €
- Modern Engineered Bamboo Structures (eBook, PDF)48,95 €
- Salah El-MetwallyStructural Concrete (eBook, PDF)120,95 €
-
-
-
Helping readers prepare for the civil and structural PE exam, this book presents numerous design examples that serve as a comprehensive, step-by-step guide to basic bridge design using the AASHTO LRFD Bridge Design Specifications, Fifth Edition.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 358
- Erscheinungstermin: 8. April 2013
- Englisch
- ISBN-13: 9781466566880
- Artikelnr.: 57100151
- Verlag: Taylor & Francis
- Seitenzahl: 358
- Erscheinungstermin: 8. April 2013
- Englisch
- ISBN-13: 9781466566880
- Artikelnr.: 57100151
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jai B. Kim, PE, PhD, is a professor emeritus of civil and environmental engineering at Bucknell University. He was department chairman for 26 years. Also, currently he is a bridge consultant (since 1980) and president of BKLB Structural Consultants, Inc. Recently he was a structural engineer at the Federal Highway Administration (FHWA). He has been active in bridge research for over 40 years, and was a member of the Transportation Research Board Committee of Bridges and Structures. He also served on the Structural PE Exam Committee of the National Council of Examiners and Surveying (NCEES) for many years. He holds a BSCE and MSCE from Oregon State University and a PhD from University of Maryland. Robert H. Kim, PE, MSCE, is chief design engineer for BKLB Structural Consultants, Inc. He has extensive experience in the design, research, and construction of highway bridges. He has authored and presented several papers related to bridge engineering. Robert's three books, Bridge Design for the Civil and Structural Professional Exams, Second Edition; Timber Design, Seventh Edition; and Civil Discipline Specific Review for the FE/EIT Exam are well-read by both students and engineers. In 2013, he is working on a bridge rehabilitation design in Connecticut. He holds a BS from Carnegie Mellon University and a MSCE from Penn State University. Jonathan R. Eberle, BSCE is engaged in research with focus on the seismic design and analysis of structures at Virginia Polytechnic Institute and State University as a graduate student. He holds a BSCE from Bucknell University. Contributors: Dave M. Mante, MSCE performed a rigorous full-scale laboratory testing on an innovative concrete bridge deck system and he is performing research on prestressed concrete girders at Auburn University. Eric J. Weaver, PE, M.Eng, performed research on fatigue and life-cycle analysis of steel truss bridges at Lehigh University. He worked for NASA's space shuttle program and currently he is working as a structural engineer for Westinghouse Electric Co.
Introduction. LRFD Method of Bridge Design. Limit States. Load Combinations
and Load Factors. Strength Limit States for Superstructure Design.
Resistance Factors, ¿, for Strength Limits. Design Live Load HL-93. Fatigue
Live Load. Number of Design Lanes, NL. Multiple Presence Factor of Live
Load, m. Dynamic Load Allowance, IM. Live Load Distribution Factors. Load
Combinations for the Strength I Limit State. Simple Beam Live Load Moments
and Shears Carrying Moving Concentrated Loads per Lane. Live Load Moments
and Shears for Beams (Girders). Design Examples. Design Example 1:
Reinforced Concrete T-Beam Bridge. Design Example 2: Load Rating of
Reinforced Concrete T-Beam by the Load and Resistance Factor Rating (LRFR)
Method. Design Example 3: Composite Steel-Concrete Bridge. Design Example
4: Longitudinal Steel Girder. Design Example 5: Reinforced Concrete Slabs.
Design Example 6: Prestressed Interior Concrete Girder. Design Example 7:
Flexural and Transverse Reinforcement for 50 ft Reinforced Concrete Girder.
Design Example 8: Determination of Load Effects Due to Wind Loads, Braking
Force, Temperature Changes, and Earthquake Loads Acting on an Abutment.
Practice Problems. Practice Problem 1: Non-composite 60 ft Steel Beam
Bridge for Limit States Strength I, Fatigue II, and Service. Practice
Problem 2: 161 ft Steel I-Beam Bridge with Concrete Slab. Practice Problem
3: Interior Prestressed Concrete I-Beam References. Primary References.
Supplementary References. Appendices. Index.
and Load Factors. Strength Limit States for Superstructure Design.
Resistance Factors, ¿, for Strength Limits. Design Live Load HL-93. Fatigue
Live Load. Number of Design Lanes, NL. Multiple Presence Factor of Live
Load, m. Dynamic Load Allowance, IM. Live Load Distribution Factors. Load
Combinations for the Strength I Limit State. Simple Beam Live Load Moments
and Shears Carrying Moving Concentrated Loads per Lane. Live Load Moments
and Shears for Beams (Girders). Design Examples. Design Example 1:
Reinforced Concrete T-Beam Bridge. Design Example 2: Load Rating of
Reinforced Concrete T-Beam by the Load and Resistance Factor Rating (LRFR)
Method. Design Example 3: Composite Steel-Concrete Bridge. Design Example
4: Longitudinal Steel Girder. Design Example 5: Reinforced Concrete Slabs.
Design Example 6: Prestressed Interior Concrete Girder. Design Example 7:
Flexural and Transverse Reinforcement for 50 ft Reinforced Concrete Girder.
Design Example 8: Determination of Load Effects Due to Wind Loads, Braking
Force, Temperature Changes, and Earthquake Loads Acting on an Abutment.
Practice Problems. Practice Problem 1: Non-composite 60 ft Steel Beam
Bridge for Limit States Strength I, Fatigue II, and Service. Practice
Problem 2: 161 ft Steel I-Beam Bridge with Concrete Slab. Practice Problem
3: Interior Prestressed Concrete I-Beam References. Primary References.
Supplementary References. Appendices. Index.
Introduction. LRFD Method of Bridge Design. Limit States. Load Combinations
and Load Factors. Strength Limit States for Superstructure Design.
Resistance Factors, ¿, for Strength Limits. Design Live Load HL-93. Fatigue
Live Load. Number of Design Lanes, NL. Multiple Presence Factor of Live
Load, m. Dynamic Load Allowance, IM. Live Load Distribution Factors. Load
Combinations for the Strength I Limit State. Simple Beam Live Load Moments
and Shears Carrying Moving Concentrated Loads per Lane. Live Load Moments
and Shears for Beams (Girders). Design Examples. Design Example 1:
Reinforced Concrete T-Beam Bridge. Design Example 2: Load Rating of
Reinforced Concrete T-Beam by the Load and Resistance Factor Rating (LRFR)
Method. Design Example 3: Composite Steel-Concrete Bridge. Design Example
4: Longitudinal Steel Girder. Design Example 5: Reinforced Concrete Slabs.
Design Example 6: Prestressed Interior Concrete Girder. Design Example 7:
Flexural and Transverse Reinforcement for 50 ft Reinforced Concrete Girder.
Design Example 8: Determination of Load Effects Due to Wind Loads, Braking
Force, Temperature Changes, and Earthquake Loads Acting on an Abutment.
Practice Problems. Practice Problem 1: Non-composite 60 ft Steel Beam
Bridge for Limit States Strength I, Fatigue II, and Service. Practice
Problem 2: 161 ft Steel I-Beam Bridge with Concrete Slab. Practice Problem
3: Interior Prestressed Concrete I-Beam References. Primary References.
Supplementary References. Appendices. Index.
and Load Factors. Strength Limit States for Superstructure Design.
Resistance Factors, ¿, for Strength Limits. Design Live Load HL-93. Fatigue
Live Load. Number of Design Lanes, NL. Multiple Presence Factor of Live
Load, m. Dynamic Load Allowance, IM. Live Load Distribution Factors. Load
Combinations for the Strength I Limit State. Simple Beam Live Load Moments
and Shears Carrying Moving Concentrated Loads per Lane. Live Load Moments
and Shears for Beams (Girders). Design Examples. Design Example 1:
Reinforced Concrete T-Beam Bridge. Design Example 2: Load Rating of
Reinforced Concrete T-Beam by the Load and Resistance Factor Rating (LRFR)
Method. Design Example 3: Composite Steel-Concrete Bridge. Design Example
4: Longitudinal Steel Girder. Design Example 5: Reinforced Concrete Slabs.
Design Example 6: Prestressed Interior Concrete Girder. Design Example 7:
Flexural and Transverse Reinforcement for 50 ft Reinforced Concrete Girder.
Design Example 8: Determination of Load Effects Due to Wind Loads, Braking
Force, Temperature Changes, and Earthquake Loads Acting on an Abutment.
Practice Problems. Practice Problem 1: Non-composite 60 ft Steel Beam
Bridge for Limit States Strength I, Fatigue II, and Service. Practice
Problem 2: 161 ft Steel I-Beam Bridge with Concrete Slab. Practice Problem
3: Interior Prestressed Concrete I-Beam References. Primary References.
Supplementary References. Appendices. Index.