Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. It is well-known that many real-world problems modeled by MDPs have huge state and/or action spaces, leading to the notorious curse of dimensionality that makes practical solution of the resulting models intractable. In other cases, the system of interest is complex enough that it is not feasible to specify some of the MDP model parameters explicitly, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based numerical algorithms have been developed recently to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include:
. multi-stage adaptive sampling;
. evolutionary policy iteration;
. evolutionary random policy search; and
. model reference adaptive search.
Simulation-based Algorithms for Markov Decision Processes brings this state-of-the-art research together for the first time and presents it in a manner that makes it accessible to researchers with varying interests and backgrounds. In addition to providing numerous specific algorithms, the exposition includes both illustrative numerical examples and rigorous theoretical convergence results. The algorithms developed and analyzed differ from the successful computational methods for solving MDPs based on neuro-dynamic programming or reinforcement learning and will complement work in those areas. Furthermore, the authors show how to combine the various algorithms introduced with approximate dynamic programming methods that reduce the size of the state space and ameliorate the effects of dimensionality.
The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling andcontrol, and simulation but will be a valuable source of instruction and reference for students of control and operations research.
. multi-stage adaptive sampling;
. evolutionary policy iteration;
. evolutionary random policy search; and
. model reference adaptive search.
Simulation-based Algorithms for Markov Decision Processes brings this state-of-the-art research together for the first time and presents it in a manner that makes it accessible to researchers with varying interests and backgrounds. In addition to providing numerous specific algorithms, the exposition includes both illustrative numerical examples and rigorous theoretical convergence results. The algorithms developed and analyzed differ from the successful computational methods for solving MDPs based on neuro-dynamic programming or reinforcement learning and will complement work in those areas. Furthermore, the authors show how to combine the various algorithms introduced with approximate dynamic programming methods that reduce the size of the state space and ameliorate the effects of dimensionality.
The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling andcontrol, and simulation but will be a valuable source of instruction and reference for students of control and operations research.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the book reviews:
"The book consists of five chapters. ... This well-written book is addressed to researchers in MDPs and applied modeling with an interests in numerical computations, but the book is also accessible to graduate students in operation research, computer science, and economics. The authors gives many pseudocodes of algorithms, numerical examples, algorithms convergence analysis and bibliographical notes that can be very helpful for readers to understand the ideas presented in the book and to perform experiments on their own." (Wieslaw Kotarski, zbMATH, Vol. 1293, 2014)
"The book consists of five chapters. ... This well-written book is addressed to researchers in MDPs and applied modeling with an interests in numerical computations, but the book is also accessible to graduate students in operation research, computer science, and economics. The authors gives many pseudocodes of algorithms, numerical examples, algorithms convergence analysis and bibliographical notes that can be very helpful for readers to understand the ideas presented in the book and to perform experiments on their own." (Wieslaw Kotarski, zbMATH, Vol. 1293, 2014)