38,00 €
38,00 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
38,00 €
38,00 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
38,00 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
38,00 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Inhaltsangabe:Einleitung: Die optische Nachrichtentechnik gewinnt in der Telekommunikation mit dem wachsenden Bedarf an hohen Übertragungsraten und der Globalisierung der Informationsverarbeitung an Bedeutung. Die Bauteile der integrierten Optik sind aufgrund ihrer Anwendungsmöglichkeiten innerhalb der optischen Nachrichtentechnik von großem Interesse, da bei Verteilungs- und Schaltfunktionen auf die Umwandlung in elektrische Signale verzichtet werden kann. Das im Rahmen dieser Diplomarbeit betrachtete Bauteil, der passive optische Sternkoppler, findet vorwiegend in lokalen Netzen seine…mehr

Produktbeschreibung
Inhaltsangabe:Einleitung: Die optische Nachrichtentechnik gewinnt in der Telekommunikation mit dem wachsenden Bedarf an hohen Übertragungsraten und der Globalisierung der Informationsverarbeitung an Bedeutung. Die Bauteile der integrierten Optik sind aufgrund ihrer Anwendungsmöglichkeiten innerhalb der optischen Nachrichtentechnik von großem Interesse, da bei Verteilungs- und Schaltfunktionen auf die Umwandlung in elektrische Signale verzichtet werden kann. Das im Rahmen dieser Diplomarbeit betrachtete Bauteil, der passive optische Sternkoppler, findet vorwiegend in lokalen Netzen seine Anwendung. Die hierbei verwendbaren Materialien müssen gewährleisten, dass die Lichtwellenleiter geringe Übertragungsverluste durch Dämpfung und Dispersion besitzen und reproduzierbar herzustellen sind. Die Möglichkeit der Kopplung an andere optische Komponenten wie Glasfasern, Lichtquellen und Photodetektoren ist ebenso wichtig. Diese Forderungen erfüllen verschiedene Substratmaterialien wie z. B. Glas, Polymere und nicht zuletzt Silizium. Die Herstellung des Sternkopplers auf Siliziumsubstrat hat verschiedene Vorteile. Standardsiliziumwafer besitzen eine qualitativ hochwertige Oberfläche und sind deshalb ein geeignetes Substrat für optische Wellenleiter. Die Siliziumtechnologie ist gut erforscht und zur Abscheidung und Strukturierung der Lichtwellenleiterschichten kann auf Verfahren der Halbleitertechnologie zurückgegriffen werden. Ein weiterer Vorteil ist das einfach herzustellende, arteigene Oxid des Siliziums mit guten optischen Eigenschaften. Aufgrund des großen finanziellen und zeitlichen Aufwandes ist es sinnvoll, vor der technologischen Realisierung eine simulatorische Opitimierung durchzuführen. Aus diesem Grund teilt sich diese Diplomarbeit zu etwa gleichen Teilen in einen simulatorischen und einen technologischen bzw. messtechnischen Teil auf. Ziel dieser Diplomarbeit ist es, einen integriert optischen Sternkoppler auf Siliziumsubstrat herzustellen, der unabhängig von der Wahl des Einkoppelwellenleiters die eingekoppelte Leistung gleichmäßig auf alle Ausgangswellenleiter verteilt. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung4 2.Der passive, optische Sternkoppler5 2.1Verwendungsmöglichkeiten von optischen Sternkopplern5 2.1.1Einsatz in sternartigen Netzen5 2.1.2Aufbau eines integriert-optischen 8x8-Sternkopplers6 2.1.3Einsatz in integriert-optischen Frequenzmultiplexern9 2.1.4Aufbau eines in Multiplexern verwendeten 8x20 [...]

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.