Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book explores the importance of Single Nucleotide Polymorphisms (SNPs) in biomedical research. As SNP technologies have evolved from labor intensive, expensive, time-consuming processes to relatively inexpensive methods, SNP discovery has exploded. In terms of human biology, this research, particularly since the completion of the Human Genome Project, has provided a detailed understanding of evolutionary forces that have generated SNPs. It also has shown how SNPs shape human variation. The ability to inexpensively generate and analyze vast amounts of genetic data is poised to transform…mehr
This book explores the importance of Single Nucleotide Polymorphisms (SNPs) in biomedical research. As SNP technologies have evolved from labor intensive, expensive, time-consuming processes to relatively inexpensive methods, SNP discovery has exploded. In terms of human biology, this research, particularly since the completion of the Human Genome Project, has provided a detailed understanding of evolutionary forces that have generated SNPs. It also has shown how SNPs shape human variation. The ability to inexpensively generate and analyze vast amounts of genetic data is poised to transform our understanding of human evolution and biology. “Single Nucleotide Polymorphisms” covers a broad survey of SNPs and their classification into synonymous and non-synonymous; the role of SNPs in human disease; case studies providing specific examples of synonymous and non-synonymous SNPs associated with human diseases or affecting therapeutic interventions; mechanisms by which synonymous mutations affect protein levels or protein folding which affect human physiology and response to therapy; and the role of SNPs in personalized medicine. Understanding what SNPs are, how they have been shaped is necessary for an increasingly expanding audience. This research will revolutionize the future of medicine. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
SNPs Ability to Influence Disease Risk: Breaking the Silence on Synonymous Mutations in Cancer" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Zuben E Sauna is a Principal Investigator and product reviewer with the US Food and Drug Administration. His research interests lie in the next generation of therapeutic proteins and in pharmacogenetics. A key focus of his research activities has been to understand the pharmacogenetic basis of the immune response to protein therapeutics, which can significantly affect the efficacy and safety of these drugs.
Chava Kimchi-Sarfaty is a Principal Investigator, product reviewer and Associate Director of Research at the Office of Tissues and Advanced Therapies, US Food and Drug Administration. Her research interests lie in the role of synonymous mutations in the human health and disease. Her pioneering work demonstrated that synonymous mutations, once considered “silent” can affect protein structure and function. Today numerous diseases and drug susceptibilities are associated with synonymous mutations.
Inhaltsangabe
SECTION I.- Chapter 1: Evolutionary Forces that Generate SNPs.- Chapter 2: Conserved SNPs: Providing Answers to Fundamental Questions in Human Biology.- Chapter 3: SNPs Classification and Terminology.- SECTION II.- Chapter 4: SNPs Ability to Influence Disease Risk.- Chapter 5: GWAS to Identify SNPs Associated with Common Diseases and Individual Risk.- SECTION III.- Chapter 6: A Case Study of Molecular Mechanisms by Which Non-Synonymous SNPs Alter Protein Structure and Function.- Chapter 7: A Case Study of Molecular Mechanisms by Which Synonymous SNPs Alter Protein Structure and Function.- SECTION IV.- Chapter 8: Using Genome-Wide Studies to Study Synonymous Codons.- Chapter 9: Bioinformatics Tools for Identification of SNPs.- Chapter 10: Bionformatic Tools for Predicting SNPs Effects on Gene Function and Phenotype.- Chapter 11: New Biophysical Techniques for Single mRNA Molecule Measurements.- Chapter 12: Emerging Mechanisms by Which Synonymous Mutations Affect Protein Folding, Protein Function and Physiological Changes.- SECTION V.- Chapter 13: SNPs and Personalized Medicine.- Chapter 14: Distribution of SNPs Associated with Personality Traits.- Chapter 15: Condon Optimization.
SECTION I.- Chapter 1: Evolutionary Forces that Generate SNPs.- Chapter 2: Conserved SNPs: Providing Answers to Fundamental Questions in Human Biology.- Chapter 3: SNPs Classification and Terminology.- SECTION II.- Chapter 4: SNPs Ability to Influence Disease Risk.- Chapter 5: GWAS to Identify SNPs Associated with Common Diseases and Individual Risk.- SECTION III.- Chapter 6: A Case Study of Molecular Mechanisms by Which Non-Synonymous SNPs Alter Protein Structure and Function.- Chapter 7: A Case Study of Molecular Mechanisms by Which Synonymous SNPs Alter Protein Structure and Function.- SECTION IV.- Chapter 8: Using Genome-Wide Studies to Study Synonymous Codons.- Chapter 9: Bioinformatics Tools for Identification of SNPs.- Chapter 10: Bionformatic Tools for Predicting SNPs Effects on Gene Function and Phenotype.- Chapter 11: New Biophysical Techniques for Single mRNA Molecule Measurements.- Chapter 12: Emerging Mechanisms by Which Synonymous Mutations Affect Protein Folding, Protein Function and Physiological Changes.- SECTION V.- Chapter 13: SNPs and Personalized Medicine.- Chapter 14: Distribution of SNPs Associated with Personality Traits.- Chapter 15: Condon Optimization.
SECTION I.- Chapter 1: Evolutionary Forces that Generate SNPs.- Chapter 2: Conserved SNPs: Providing Answers to Fundamental Questions in Human Biology.- Chapter 3: SNPs Classification and Terminology.- SECTION II.- Chapter 4: SNPs Ability to Influence Disease Risk.- Chapter 5: GWAS to Identify SNPs Associated with Common Diseases and Individual Risk.- SECTION III.- Chapter 6: A Case Study of Molecular Mechanisms by Which Non-Synonymous SNPs Alter Protein Structure and Function.- Chapter 7: A Case Study of Molecular Mechanisms by Which Synonymous SNPs Alter Protein Structure and Function.- SECTION IV.- Chapter 8: Using Genome-Wide Studies to Study Synonymous Codons.- Chapter 9: Bioinformatics Tools for Identification of SNPs.- Chapter 10: Bionformatic Tools for Predicting SNPs Effects on Gene Function and Phenotype.- Chapter 11: New Biophysical Techniques for Single mRNA Molecule Measurements.- Chapter 12: Emerging Mechanisms by Which Synonymous Mutations Affect Protein Folding, Protein Function and Physiological Changes.- SECTION V.- Chapter 13: SNPs and Personalized Medicine.- Chapter 14: Distribution of SNPs Associated with Personality Traits.- Chapter 15: Condon Optimization.
SECTION I.- Chapter 1: Evolutionary Forces that Generate SNPs.- Chapter 2: Conserved SNPs: Providing Answers to Fundamental Questions in Human Biology.- Chapter 3: SNPs Classification and Terminology.- SECTION II.- Chapter 4: SNPs Ability to Influence Disease Risk.- Chapter 5: GWAS to Identify SNPs Associated with Common Diseases and Individual Risk.- SECTION III.- Chapter 6: A Case Study of Molecular Mechanisms by Which Non-Synonymous SNPs Alter Protein Structure and Function.- Chapter 7: A Case Study of Molecular Mechanisms by Which Synonymous SNPs Alter Protein Structure and Function.- SECTION IV.- Chapter 8: Using Genome-Wide Studies to Study Synonymous Codons.- Chapter 9: Bioinformatics Tools for Identification of SNPs.- Chapter 10: Bionformatic Tools for Predicting SNPs Effects on Gene Function and Phenotype.- Chapter 11: New Biophysical Techniques for Single mRNA Molecule Measurements.- Chapter 12: Emerging Mechanisms by Which Synonymous Mutations Affect Protein Folding, Protein Function and Physiological Changes.- SECTION V.- Chapter 13: SNPs and Personalized Medicine.- Chapter 14: Distribution of SNPs Associated with Personality Traits.- Chapter 15: Condon Optimization.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Shop der buecher.de GmbH & Co. KG i.I. Bürgermeister-Wegele-Str. 12, 86167 Augsburg Amtsgericht Augsburg HRA 13309