149,79 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

This book explores the importance of Single Nucleotide Polymorphisms (SNPs) in biomedical research. As SNP technologies have evolved from labor intensive, expensive, time-consuming processes to relatively inexpensive methods, SNP discovery has exploded. In terms of human biology, this research, particularly since the completion of the Human Genome Project, has provided a detailed understanding of evolutionary forces that have generated SNPs. It also has shown how SNPs shape human variation. The ability to inexpensively generate and analyze vast amounts of genetic data is poised to transform…mehr

Produktbeschreibung
This book explores the importance of Single Nucleotide Polymorphisms (SNPs) in biomedical research. As SNP technologies have evolved from labor intensive, expensive, time-consuming processes to relatively inexpensive methods, SNP discovery has exploded. In terms of human biology, this research, particularly since the completion of the Human Genome Project, has provided a detailed understanding of evolutionary forces that have generated SNPs. It also has shown how SNPs shape human variation. The ability to inexpensively generate and analyze vast amounts of genetic data is poised to transform our understanding of human evolution and biology. “Single Nucleotide Polymorphisms” covers a broad survey of SNPs and their classification into synonymous and non-synonymous; the role of SNPs in human disease; case studies providing specific examples of synonymous and non-synonymous SNPs associated with human diseases or affecting therapeutic interventions; mechanisms by which synonymous mutations affect protein levels or protein folding which affect human physiology and response to therapy; and the role of SNPs in personalized medicine. Understanding what SNPs are, how they have been shaped is necessary for an increasingly expanding audience. This research will revolutionize the future of medicine. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

SNPs Ability to Influence Disease Risk: Breaking the Silence on Synonymous Mutations in Cancer" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Autorenporträt
Zuben E Sauna is a Principal Investigator and product reviewer with the US Food and Drug Administration. His research interests lie in the next generation of therapeutic proteins and in pharmacogenetics. A key focus of his research activities has been to understand the pharmacogenetic basis of the immune response to protein therapeutics, which can significantly affect the efficacy and safety of these drugs.

Chava Kimchi-Sarfaty is a Principal Investigator, product reviewer and Associate Director of Research at the Office of Tissues and Advanced Therapies, US Food and Drug Administration. Her research interests lie in the role of synonymous mutations in the human health and disease. Her pioneering work demonstrated that synonymous mutations, once considered “silent” can affect protein structure and function. Today numerous diseases and drug susceptibilities are associated with synonymous mutations.