113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
Als Download kaufen
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
Jetzt verschenken
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
  • Format: PDF

The use of conventional nuclear magnetic resonance is limited by the fact that the object needs to be carried to the NMR equipment and needs to fit inside large superconducting magnets. Both limitations are removed by single-sided NMR probes based on open magnets specially adapted to the object under study. These can be inexpensive and portable sensors that give access to a large number of applications inaccessible with using conventional magnet geometries. Substantial improvements in the magnet design, detection electronics, and the implementation of suitable techniques to work in the…mehr

Produktbeschreibung
The use of conventional nuclear magnetic resonance is limited by the fact that the object needs to be carried to the NMR equipment and needs to fit inside large superconducting magnets. Both limitations are removed by single-sided NMR probes based on open magnets specially adapted to the object under study. These can be inexpensive and portable sensors that give access to a large number of applications inaccessible with using conventional magnet geometries. Substantial improvements in the magnet design, detection electronics, and the implementation of suitable techniques to work in the inhomogeneous magnetic fields of open magnets have allowed scientists and engineers to measure relaxation-time distributions, diffusion coefficients, 3D images, velocity distributions, and even highly resolved NMR spectra in the stray field of the magnet. This book is the first comprehensive account describing the key issues to be considered at the time of designing and building open magnets, and summarizing the arsenal of pulse sequences available today for material analysis.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Currently an Assistant Editor for the journal Cell, Michaeleen Doucleff obtained her PhD in Chemistry from the University of California, Berkeley while working in the laboratory of David E. Wemmer. Doucleff then became a Nancy Nossal postdoctoral fellow at the National Institute's of Health in the laboratory of G. Marius Clore. Throughout her career, she has used NMR spectroscopy and X-ray crystallography to characterize the structure and dynamics of transcription factors and their interaction with DNA. Mary Hatcher-Skeers is a Professor of Chemistry in the Joint Science Department of Claremont McKenna, Pitzer and Scripps Colleges in Claremont CA.  She teaches General Chemistry, Biochemistry, Physical Chemistry and NMR Spectroscopy.  Hatcher-Skeers received her PhD in Chemistry from the University of Washington while working in the laboratory of Gary Drobny.  She was then a NIH Post-Doctoral Fellow in the labs of Judith Herzfeld at Brandeis University and Robert Griffin at MIT.  Professor Hatcher-Skeers' research uses solid-state and solution NMR spectroscopy to investigate the role of DNA structure and dynamics in protein and drug binding.  She has trained over 70 undergraduates in her research lab, a number who have gone on to graduate programs in chemistry and biochemistry. Nicole Crane, Ph.D. is currently a Scientist at the Naval Medical Research Center in Silver Spring, MD where she is establishing the Regenerative Medicine Department's Advanced Imaging Program.  Her research focuses on development and utilization of spectroscopic techniques to improve understanding of the wound healing process, particularly in traumatic acute wounds, as well as identifying and quantifying transplant-associated ischemia and reperfusion injury. Her experience as anapplied spectroscopist includes applications in forensics, pharmaceuticals, and biomedicine. Dr. Crane has published over fifteen peer-reviewed publications and presented at numerous regional and national scientific meetings. She is also an inventor on two US patents.