-22%11
46,99 €
59,99 €**
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
-22%11
46,99 €
59,99 €**
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
Als Download kaufen
59,99 €****
-22%11
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Jetzt verschenken
Alle Infos zum eBook verschenken
59,99 €****
-22%11
46,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.19MB
Produktdetails
- Verlag: Birkhäuser Basel
- Seitenzahl: 140
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783034886574
- Artikelnr.: 53161269
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Horst Knörrer is a Professor of Mathematics at the ETH Zurich, Switzerland.
1 Klassifikation der einfachen Hyperflächen-Singularitäten.- 1.1 Abbildungskeime, Rechtsäquivalenz, Einfachheit.- 1.2 Endlich bestimmte Funktionskeime.- 1.3 Klassifikation der einfachen Singularitäten in ?2.- 1.4 Beweis des verallgemeinerten Morse-Lemmas V.- 1.5 Klassifikation der einfachen Singularitäten in ?n.- 2 Die einfachen Flächensingularitäten in ?3 als Quotientensingularitäten.- 2.1 Die endlichen Untergruppen von SL(2,?).- 2.2 Quotientensingularitäten.- 2.3 ?2/G, wo G eine endliche Untergruppe von SL(2,?) ist.- 2.4 Die Rationalität der Quotientensingularitäten.- 3 Die Auflösung der einfachen zweidimensionalen Hyperflächensingularitäten.- 3.1 Das Auflösen von Kurvensingularitäten.- 3.2 Das Auflösen von (S2/G, wo G eine endliche Untergruppe.- von SL(2,S) ist.- 4 Elementare lokale Eigenschaften von Singularitäten.- 4.1 Der Umgebungsrand.- 4.2 Gute Repräsentanten von Abbildungskeimen.- 4.3 Monodromie.- 4.4 Die Monodromie einer quadratischen Singularität (lokaler Fall).- 5 Die Untersuchung von Milnorfasern.- 5.1 Milnorfasern von ebenen Kurvensingularitäten.- 5.2 Milnorfasern von Hyperflächensingularitäten.- 6 Die Berechnung der Monodromie.- 6.1 Die Morsifikation.- 6.2 Die Monodromie der ebenen Kurvensingularitäten in ?2.- 6.3 Dynkin-Diagramm und Monodromiegruppe.- 6.4 Die Monodromie beim Addieren von Funktionskeimen.- 7 Periodenintegrale und der Gauss-Manin-Zusammenhang.- 7.1 Die de Rham-Cohomologie von guten Repräsentanten.- 7.2 Der Gauss-Manin-Zusammenhang.- 7.3 Periodenintegrale im komplexen Fall.- 7.4 Periodenintegrale im reellen Fall.- 8 Anhang.
1 Klassifikation der einfachen Hyperflächen-Singularitäten.- 1.1 Abbildungskeime, Rechtsäquivalenz, Einfachheit.- 1.2 Endlich bestimmte Funktionskeime.- 1.3 Klassifikation der einfachen Singularitäten in ?2.- 1.4 Beweis des verallgemeinerten Morse-Lemmas V.- 1.5 Klassifikation der einfachen Singularitäten in ?n.- 2 Die einfachen Flächensingularitäten in ?3 als Quotientensingularitäten.- 2.1 Die endlichen Untergruppen von SL(2,?).- 2.2 Quotientensingularitäten.- 2.3 ?2/G, wo G eine endliche Untergruppe von SL(2,?) ist.- 2.4 Die Rationalität der Quotientensingularitäten.- 3 Die Auflösung der einfachen zweidimensionalen Hyperflächensingularitäten.- 3.1 Das Auflösen von Kurvensingularitäten.- 3.2 Das Auflösen von (S2/G, wo G eine endliche Untergruppe.- von SL(2,S) ist.- 4 Elementare lokale Eigenschaften von Singularitäten.- 4.1 Der Umgebungsrand.- 4.2 Gute Repräsentanten von Abbildungskeimen.- 4.3 Monodromie.- 4.4 Die Monodromie einer quadratischen Singularität (lokaler Fall).- 5 Die Untersuchung von Milnorfasern.- 5.1 Milnorfasern von ebenen Kurvensingularitäten.- 5.2 Milnorfasern von Hyperflächensingularitäten.- 6 Die Berechnung der Monodromie.- 6.1 Die Morsifikation.- 6.2 Die Monodromie der ebenen Kurvensingularitäten in ?2.- 6.3 Dynkin-Diagramm und Monodromiegruppe.- 6.4 Die Monodromie beim Addieren von Funktionskeimen.- 7 Periodenintegrale und der Gauss-Manin-Zusammenhang.- 7.1 Die de Rham-Cohomologie von guten Repräsentanten.- 7.2 Der Gauss-Manin-Zusammenhang.- 7.3 Periodenintegrale im komplexen Fall.- 7.4 Periodenintegrale im reellen Fall.- 8 Anhang.