Alexandru Dimca
Singularities and Topology of Hypersurfaces (eBook, PDF)
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
53,95 €
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
Alexandru Dimca
Singularities and Topology of Hypersurfaces (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.32MB
Andere Kunden interessierten sich auch für
- Kang ZuoRepresentations of Fundamental Groups of Algebraic Varieties (eBook, PDF)27,95 €
- Trends in Singularities (eBook, PDF)40,95 €
- Global Aspects of Complex Geometry (eBook, PDF)73,95 €
- Serge LangDifferential and Riemannian Manifolds (eBook, PDF)48,95 €
- Friedrich HirzebruchTopological Methods in Algebraic Geometry (eBook, PDF)65,95 €
- Yves AndréDe Rham Cohomology of Differential Modules on Algebraic Varieties (eBook, PDF)89,95 €
- Yves AndréDe Rham Cohomology of Differential Modules on Algebraic Varieties (eBook, PDF)73,95 €
- -31%11
-
-
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 263
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461244042
- Artikelnr.: 44063414
- Verlag: Springer New York
- Seitenzahl: 263
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461244042
- Artikelnr.: 44063414
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Whitney Stratifications.
1. Some Motivations and Basic Definitions.
2. Topological Triviality and ?*
Constant Deformations.
3. The First Thom Isotopy Lemma.
4. On the Topology of Affine Hypersurfaces.
5. Links and Conic Structures.
6. On Zariski Theorems of Lefschetz Type.
2 Links of Curve and Surface Singularities.
1. A Quick Trip into Classical Knot Theory.
2. Links of Plane Curve Singularities.
3. Links of Surface Singularities.
4. Special Classes of Surface Singularities.
3 The Milnor Fibration and the Milnor Lattice.
1. The Milnor Fibration.
2. The Connectivity of the Link, of the Milnor Fiber, and of Its Boundary.
3. Vanishing Cycles and the Intersection Form.
4. Homology Spheres, Exotic Spheres, and the Casson Invariant.
4 Fundamental Groups of Hypersurface Complements.
1. Some General Results.
2. Presentations of Groups and Monodromy Relations.
3. The van Kampen
Zariski Theorem.
4. Two Classical Examples.
5 Projective Complete Intersections.
1. Topology of the Projective Space Pn.
2. Topology of Complete Intersections.
3. Smooth Complete Intersections.
4. Complete Intersections with Isolated Singularities.
6 de Rham Cohomology of Hypersurface Complements.
1. Differential Forms on Hypersurface Complements.
2. Spectral Sequences and Koszul Complexes.
3. Singularities with a One
Dimensional Critical Locus.
4. Alexander Polynomials and Defects of Linear Systems.
Appendix A Integral Bilinear Forms and Dynkin Diagrams.
Appendix B Weighted Projective Varieties.
Appendix C Mixed Hodge Structures.
References.
1. Some Motivations and Basic Definitions.
2. Topological Triviality and ?*
Constant Deformations.
3. The First Thom Isotopy Lemma.
4. On the Topology of Affine Hypersurfaces.
5. Links and Conic Structures.
6. On Zariski Theorems of Lefschetz Type.
2 Links of Curve and Surface Singularities.
1. A Quick Trip into Classical Knot Theory.
2. Links of Plane Curve Singularities.
3. Links of Surface Singularities.
4. Special Classes of Surface Singularities.
3 The Milnor Fibration and the Milnor Lattice.
1. The Milnor Fibration.
2. The Connectivity of the Link, of the Milnor Fiber, and of Its Boundary.
3. Vanishing Cycles and the Intersection Form.
4. Homology Spheres, Exotic Spheres, and the Casson Invariant.
4 Fundamental Groups of Hypersurface Complements.
1. Some General Results.
2. Presentations of Groups and Monodromy Relations.
3. The van Kampen
Zariski Theorem.
4. Two Classical Examples.
5 Projective Complete Intersections.
1. Topology of the Projective Space Pn.
2. Topology of Complete Intersections.
3. Smooth Complete Intersections.
4. Complete Intersections with Isolated Singularities.
6 de Rham Cohomology of Hypersurface Complements.
1. Differential Forms on Hypersurface Complements.
2. Spectral Sequences and Koszul Complexes.
3. Singularities with a One
Dimensional Critical Locus.
4. Alexander Polynomials and Defects of Linear Systems.
Appendix A Integral Bilinear Forms and Dynkin Diagrams.
Appendix B Weighted Projective Varieties.
Appendix C Mixed Hodge Structures.
References.
1 Whitney Stratifications.
1. Some Motivations and Basic Definitions.
2. Topological Triviality and ?*
Constant Deformations.
3. The First Thom Isotopy Lemma.
4. On the Topology of Affine Hypersurfaces.
5. Links and Conic Structures.
6. On Zariski Theorems of Lefschetz Type.
2 Links of Curve and Surface Singularities.
1. A Quick Trip into Classical Knot Theory.
2. Links of Plane Curve Singularities.
3. Links of Surface Singularities.
4. Special Classes of Surface Singularities.
3 The Milnor Fibration and the Milnor Lattice.
1. The Milnor Fibration.
2. The Connectivity of the Link, of the Milnor Fiber, and of Its Boundary.
3. Vanishing Cycles and the Intersection Form.
4. Homology Spheres, Exotic Spheres, and the Casson Invariant.
4 Fundamental Groups of Hypersurface Complements.
1. Some General Results.
2. Presentations of Groups and Monodromy Relations.
3. The van Kampen
Zariski Theorem.
4. Two Classical Examples.
5 Projective Complete Intersections.
1. Topology of the Projective Space Pn.
2. Topology of Complete Intersections.
3. Smooth Complete Intersections.
4. Complete Intersections with Isolated Singularities.
6 de Rham Cohomology of Hypersurface Complements.
1. Differential Forms on Hypersurface Complements.
2. Spectral Sequences and Koszul Complexes.
3. Singularities with a One
Dimensional Critical Locus.
4. Alexander Polynomials and Defects of Linear Systems.
Appendix A Integral Bilinear Forms and Dynkin Diagrams.
Appendix B Weighted Projective Varieties.
Appendix C Mixed Hodge Structures.
References.
1. Some Motivations and Basic Definitions.
2. Topological Triviality and ?*
Constant Deformations.
3. The First Thom Isotopy Lemma.
4. On the Topology of Affine Hypersurfaces.
5. Links and Conic Structures.
6. On Zariski Theorems of Lefschetz Type.
2 Links of Curve and Surface Singularities.
1. A Quick Trip into Classical Knot Theory.
2. Links of Plane Curve Singularities.
3. Links of Surface Singularities.
4. Special Classes of Surface Singularities.
3 The Milnor Fibration and the Milnor Lattice.
1. The Milnor Fibration.
2. The Connectivity of the Link, of the Milnor Fiber, and of Its Boundary.
3. Vanishing Cycles and the Intersection Form.
4. Homology Spheres, Exotic Spheres, and the Casson Invariant.
4 Fundamental Groups of Hypersurface Complements.
1. Some General Results.
2. Presentations of Groups and Monodromy Relations.
3. The van Kampen
Zariski Theorem.
4. Two Classical Examples.
5 Projective Complete Intersections.
1. Topology of the Projective Space Pn.
2. Topology of Complete Intersections.
3. Smooth Complete Intersections.
4. Complete Intersections with Isolated Singularities.
6 de Rham Cohomology of Hypersurface Complements.
1. Differential Forms on Hypersurface Complements.
2. Spectral Sequences and Koszul Complexes.
3. Singularities with a One
Dimensional Critical Locus.
4. Alexander Polynomials and Defects of Linear Systems.
Appendix A Integral Bilinear Forms and Dynkin Diagrams.
Appendix B Weighted Projective Varieties.
Appendix C Mixed Hodge Structures.
References.