Soil Microenvironment for Bioremediation and Polymer Production (eBook, ePUB)
Redaktion: Jamil, Nazia; Batool, Rida; Kumar, Prasun
Alle Infos zum eBook verschenken
Soil Microenvironment for Bioremediation and Polymer Production (eBook, ePUB)
Redaktion: Jamil, Nazia; Batool, Rida; Kumar, Prasun
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Describes harmful elements and their bioremediation techniques for tannery waste, oil spills, wastewater, greenhouse gases, plastic and other wastes. Microenvironmental conditions in soil provide a natural niche for ultra-structures, microbes and microenvironments. The natural biodiversity of these microenvironments is being disturbed by industrialization and the proliferation of urban centers, and synthetic contaminants found in these micro-places are causing stress and instability in the biochemical systems of microbes. The development of new metabolic pathways from intrinsic metabolic…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 10.45MB
- Aquatic Contamination (eBook, ePUB)147,99 €
- Biomaterials Effect on the Bone Microenvironment (eBook, ePUB)115,99 €
- Bioremediation and Bioeconomy (eBook, ePUB)90,95 €
- Microbial Biodegradation and Bioremediation (eBook, ePUB)70,95 €
- Multi-Scale Biogeochemical Processes in Soil Ecosystems (eBook, ePUB)190,99 €
- Microbial Biodegradation and Bioremediation (eBook, ePUB)96,95 €
- Algae Mediated Bioremediation (eBook, ePUB)228,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 420
- Erscheinungstermin: 2. Dezember 2019
- Englisch
- ISBN-13: 9781119592174
- Artikelnr.: 58421386
- Verlag: John Wiley & Sons
- Seitenzahl: 420
- Erscheinungstermin: 2. Dezember 2019
- Englisch
- ISBN-13: 9781119592174
- Artikelnr.: 58421386
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Part 1: Soil Microenvironment and Biotransformation Mechanisms 1
1 Applications of Microorganisms in Agriculture for Nutrients Availability
3
Fehmida Fasim and Bushra Uziar
1.1 Introduction 3
1.1.1 Land and Soil Deterioration 4
1.1.2 Micro-Nutrients Lacks 4
1.2 Biofertilizers 4
1.3 Rhizosphere 5
1.4 Plant Growth Promoting Bacteria 5
1.4.1 Nitrogen Fixation 6
1.4.2 Phosphate Solubilization 8
1.5 Microbial Mechanisms of Phosphate Solubilization 9
1.5.1 Organic Phosphate 9
1.5.2 Organic Phosphate Solubilization 10
1.6 Bacterial and Fungi Coinoculation 11
1.7 Conclusion 11
References 12
2 Native Soil Bacteria: Potential Agent for Bioremediation 17
Ranjan Kumar Mohapatra, Haragobinda Srichandan, Snehasish Mishra and Pankaj
Kumar Parhi
2.1 Introduction 17
2.2 Current Soil Pollution Scenario 19
2.2.1 Soil Pollution by Heavy Metals and Xenobiotic Compounds 19
2.2.2 Soil Pollution by Extensive Agricultural and Animal Husbandry
Practices 20
2.2.3 Pollution Due to Emerging Pollutants (Wastes from Pharmaceutical and
Personal-Care Products) 21
2.2.4 Soil Pollution by Pathogenic Microorganisms 22
2.2.5 Soil Pollution Due to Oil and Petroleum Hydrocarbons 23
2.2.6 Soil Pollution by the Nuclear and Radioactive Wastes 25
2.2.7 Soil Pollution by Military Activities and Warfare 26
2.3 Effects of Soil Pollution 26
2.3.1 Effects of Soil Pollution on Plants 26
2.3.2 Effects of Soil Pollution on Human Health 26
2.4 Diversity of Soil Bacteria from Contaminated Sites 27
2.5 Bioremediation of Toxic Pollutants 27
2.6 Bioremediation Mechanisms 27
2.7 Factors Affecting Bioremediation/Biosorption Process 29
2.8 Microbial Bioremediation Approaches 30
2.8.1 In Situ Bioremediation 30
2.8.2 Ex Situ Bioremediation 30
2.9 Conclusion and Future Prospective 30
Acknowledgements 30
References 31
3 Bacterial Mediated Remediation: A Strategy to Combat Pesticide Residues
In Agricultural Soil 35
Atia Iqbal
3.1 Introduction 35
3.2 Effects of Pesticides 36
3.3 Pesticide Degradation 37
3.4 Bacterial Mediated Biodegradation of Various Pesticides 38
3.4.1 Organophosphate Pesticides Degrading Bacteria 38
3.4.2 Methyl Parathion Mineralizing Bacteria (MP) 39
3.4.3 Mesotrione Degrading Bacteria 39
3.4.4 Aromatic Hydrocarbons Biodegradation 39
3.4.5 Bispyribac Sodium (BS) Degrading Bacteria 40
3.4.6 Carbamates (CRBs) Degradation 40
3.4.7 Propanil Degradation 40
3.4.8 Atrazine Degradation 40
3.4.9 Phenanthrene Degradation 40
3.4.10 Imidacloprid Degradation 41
3.4.11 Endusulfan Degradation 41
3.4.12 DDT 42
3.5 Conclusion 42
References 49
4 Study of Plant Microbial Interaction in Formation of Cheese Production: A
Vegan's Delight 55
Sundaresan Bhavaniramya, Ramar Vanajothi, Selvaraju Vishnupriya and Dharmar
Baskaran
4.1 Introduction 55
4.2 Cheese Concern - Vegan's Delight 57
4.3 Microorganism Interaction Pattern 57
4.4 Types of Microorganism Involved in Cheese Production 57
4.5 Lactic Acid Role in Fermentation 59
4.6 Microorganism Involved in Lactic Acid Fermentation 59
4.7 Streptococcus 60
4.8 Propionibacterium 60
4.9 Leuconostoc 60
4.10 Microorganisms in Flavor Development 61
4.11 Flavor Production 63
4.12 Enzymes Interaction during Ripening of Cheese 63
4.13 Pathways Involved in Cheese Ripening 64
4.14 Microbes of Interest in Flavor Formation 66
4.15 Structure of Flavored Compound in Cheese 67
4.16 Plant-Based Cheese Analogues 67
4.17 Plant-Based Proteins 68
4.18 Aspartic Protease 69
4.19 Cysteine Protease 69
4.20 Plant-Based Milk Alternatives 69
4.21 Types of Vegan Cheese 70
4.22 Future Scope and Conclusion 71
Acknowledgment 71
References 71
5 Microbial Remediation of Pesticide Polluted Soils 75
César Quintela and Cristiano Varrone
5.1 Introduction 75
5.2 Types of Pesticides 77
5.3 Fate of Pesticides in the Environment 81
5.3.1 Factors Affecting Pesticide Fate 81
5.3.2 Pesticides Degradation 84
5.3.3 Pesticide Remediation 85
5.4 Screening for Pesticide Degrading Microorganisms 85
5.4.1 Case Study 86
5.5 Designing Pesticide Degrading Consortia 87
5.5.1 Case Study 88
5.6 Challenges to be Addressed and Future Perspectives 88
References 90
6 Eco-Friendly and Economical Method for Detoxification of Pesticides by
Microbes 95
Anjani Kumar Upadhyay, Abhik Mojumdar, Vishakha Raina and Lopamudra Ray
6.1 Introduction 95
6.2 Classification of Pesticides 96
6.3 Fate of Pesticide in Soil 96
6.3.1 Transport of Pesticides in the Environment 96
6.3.2 Interaction of Pesticides with Soil 98
6.4 Microbial and Phytoremediation of Pesticides 99
6.4.1 Biodegradation and Bioremediation 99
6.4.2 Microbial Remediation of Pesticides 102
6.4.3 Phytoremediation of Pesticides 103
6.4.4 Strategies to Enhance the Efficiency of Bioremediation 103
6.4.5 Metabolic Aspects of Pesticides Bioremediation 105
6.5 Effects on Human and Environment 106
6.6 Advancement in Pesticide Bioremediation 107
6.7 Limitations of Bioremediation 107
6.8 Future Perspectives 108
Acknowledgement 108
References 108
Part 2: Synergistic Effects Between Substrates and Microbes 115
7 Bioleaching: A Bioremediation Process to Treat Hazardous Wastes 117
Haragobinda Srichandan, Ranjan K. Mohapatra, Pankaj K. Parhi and Snehasish
Mishra
7.1 Introduction 117
7.2 Microbes in Bioleaching 118
7.2.1 Bacteria 118
7.2.2 Fungi 119
7.3 Acidophilic Bioleaching 119
7.3.1 Contact (Direct) Mechanism 119
7.3.2 Non-Contact (Indirect) Mechanism 120
7.4 Metal Removal Pathways 120
7.4.1 Thiosulphate Pathway 120
7.4.2 Polysulphide Pathway 121
7.5 Fungal Bioleaching 122
7.6 Various Hazardous Wastes 122
7.6.1 Electronic Wastes (E-Wastes) 123
7.6.2 Spent Petroleum Catalyst 123
7.6.3 Sludge 123
7.6.4 Slag 123
7.7 Applications of Bioleaching Approach to Various Hazardous Wastes 123
7.7.1 Bioleaching of Electronic Wastes 124
7.7.2 Bioleaching of Spent Catalyst 124
7.7.3 Bioleaching of Sludge (Containing Heavy or Toxic metals) 125
7.7.4 Bioleaching of Slag 125
7.8 Conclusion 126
Acknowledgements 126
References 126
8 Microbial Bioremediation of Azo Dyes in Textile Industry Effluent: A
Review on Bioreactor-Based Studies 131
Shweta Agrawal, Devayani Tipre and Shailesh Dave
8.1 Introduction 131
8.2 Microorganism Involved in Dye Bioremediation 132
8.2.1 Bacterial Remediation of Dyes 132
8.2.2 Mycoremediation 135
8.2.3 Phycoremediation 135
8.2.4 Consortial (Co-Culture) Dye Bioremediation 135
8.3 Mechanism of Dye Biodegradation 139
8.3.1 Anaerobic Azo Dye Reduction 139
8.3.2 Aerobic Oxidation of Aromatic Amines 140
8.3.3 Combined Anaerobic-Aerobic Treatment of Azo Dyes 141
8.4 Reactor Design for Dye Bioremediation 141
8.4.1 Anaerobic Reactors 142
8.4.2 Aerobic Reactors 154
8.4.3 Combined (Integrated/Sequential) Bioreactor 157
8.4.4 Combinatorial Approaches 162
8.5 Limitations and Future Prospects 163
8.6 Conclusions 163
References 164
9 Antibiofilm Property of Biosurfactant Produced by Nesterenkonia sp. MCCB
225 Against Shrimp Pathogen, Vibrio harveyi 173
Gopalakrishnan Menon, Issac Sarojini Bright Singh, Prasannan Geetha Preena
and Sumitra Datta
9.1 Introduction 173
9.2 Materials and Methods 174
9.2.1 Isolation, Screening and Identification of Bacteria 174
9.2.2 Biofilm Disruption Studies 175
9.3 Results and Discussion 175
9.3.1 Bacterial Identification 175
9.3.2 Biofilm Disruption Studies 175
9.4 Conclusion 178
Acknowledgements 178
References 178
10 Role of Cr (VI) Resistant Bacillus megaterium in Phytoremediation 181
Rabia Faryad Khan and Rida Batool
10.1 Introduction 181
10.2 Materials and Methods 183
10.2.1 Isolation and Characterization of Chromate Resistant Bacteria 183
10.2.2 Determination of MIC (Minimum Inhibitory Concentration) of Chromate
183
10.2.3 Ribo-Typing of Bacterial Isolate rCrI 183
10.2.4 Estimation of Chromate Reduction Potential 183
10.2.5 Antibiotic and Heavy Metal Resistance Profiling 183
10.2.6 Growth Curve Studies 184
10.2.7 Chromium Uptake Estimation 185
10.2.8 Statistical Analysis 185
10.3 Results 185
10.3.1 Isolation and Characterization of Cr(VI) Resistant Bacterial
Isolates 185
10.3.2 Antibiotic and Heavy Metal Resistance Profiling 186
10.3.3 Estimation of Cr(VI) Reduction Potential 186
10.3.4 Ribo-Typing of Bacterial Isolate 186
10.3.5 Growth Curve Studies 186
10.3.6 Plant Microbe Interaction Studies Under Laboratory Conditions 187
10.3.7 Biochemical Parameters 188
10.3.8 Plant Microbe Interaction Studies Under Field Conditions 190
10.3.8.4 Number of Roots 190
10.3.9 Biochemical Parameters 190
10.4 Discussion 191
10.5 Conclusion 193
Acknowledgment 193
References 193
11 Conjugate Magnetic Nanoparticles and Microbial Remediation, a Genuine
Technology to Remediate Radioactive Waste 197
Bushra Uzair, Anum Shaukat, Fehmida Fasim, Sadaf Maqbool
11.1 Introduction 197
11.2 Use of Magnetic Nanoparticles Conjugates 199
11.2.1 Potential Benefits 199
11.2.2 Synthesis and Application 200
11.2.3 Factors Affecting Sorption 200
11.2.4 Limitations 203
11.3 Microbial Communities 203
11.3.1 Fungi as Radio-Nuclides Remade 203
11.3.2 Immobilization of Radionuclide Through Enzymatic Reduction 204
11.3.3 Immobilization Through Non-Enzymatic Reduction 204
11.3.4 Bio-Sorption of Radio-Nuclides 205
11.3.5 Biostimulation 206
11.3.6 Genetically Modified Microbes 206
11.3.7 Constraints 207
11.4 Conclusion 207
References 208
Part 3: Polyhydroxyalakanoates: Resources, Demands and Sustainability 213
12 Microbial Degradation of Plastics: New Plastic Degraders, Mixed Cultures
and Engineering Strategies 215
Samantha Jenkins, Alba Martínez i Quer, César Fonseca and Cristiano Varrone
12.1 Introduction 215
12.2 Plastics 216
12.2.1 Polyethylene Terephthalate (PET) 217
12.2.2 Low-Density Polyethylene (LDPE) 217
12.3 Plastic Disposal, Reuse and Recycling 218
12.4 Plastic Biodegradation 219
12.4.1 Plastic-Degrading Microorganisms and Enzymes 221
12.4.2 Biofilms and Plastic Biodegradation 224
12.4.3 Boosting Plastic Biodegradation by Physical and Chemical Processes
225
12.4.4 Pathway and Protein Engineering for Enhanced Plastic Biodegradation
226
12.4.5 Designing Plastic Degrading Consortia 229
12.5 Analytical Techniques to Study Plastic Degradation 230
12.6 Future Perspectives 232
References 233
13 Fatty acids as Novel Building-Blocks for Biomaterial Synthesis 239
Prasun Kumar
13.1 Introduction 239
13.2 Polyurethane (PUs) 241
13.3 Polyhydroxyalkanoates (PHAs) 243
13.4 Other Functional Attributes 246
13.4.1 Biosurfactants 246
13.4.2 Antibacterials and Biocontrol Agents 246
13.5 Future Perspectives 249
References 249
14 Polyhydroxyalkanoates: Resources, Demands and Sustainability 253
Binita Bhattacharyya, Himadri Tanaya Behera, Abhik Mojumdar, Vishakha Raina
and Lopamudra Ray
14.1 Introduction 253
14.2 Polyhydroxyalkanoates 255
14.2.1 Properties of PHAs 258
14.2.2 Production of PHA 261
14.2.3 PHA Biosynthesis in Natural Isolates 261
14.2.4 Production of PHA by Digestion of Biological Wastes 262
14.2.5 PHA Production by Recombinant Bacteria 262
14..2.6 Production of PHA by Genetically Engineered Plants 264
14.2.7 PHA Production by Methylotrophs 264
14.2.8 PHA Production Using Waste Vegetable Oil by Pseudomonas sp. Strain
DR2 264
14.2.9 Mass Production of PHA 265
14.3 Applications of PHA 266
14.4 Future Prospects 267
References 267
15 Polyhydroxyalkanoates Synthesis by Bacillus aryabhattai C48 Isolated
from Cassava Dumpsites in South-Western, Nigeria 271
Fadipe Temitope O., Nazia Jamil and Lawal Adekunle K.
15.1 Introduction 271
15.2 Materials and Methods 272
15.2.1 Morphological, Biochemical and Molecular Characterisation 272
15.2.2 Detection of PHA Production 273
15.2.3 Evaluation of PHA Production 273
15.2.4 Extraction of PHA 273
15.2.5 Fourier Transform Infrared Spectroscopy of Extracted PHA 274
15.2.6 Amplification of PhaC and PhaR Genes of Bacillus aryabhattai C48 274
15.3 Results and Discussion 274
15.4 Conclusion 280
Acknowledgements 280
References 280
Part 4: Cellulose-Based Biomaterials: Benefits and Challenges 283
16 Cellulose Nanocrystals-Based Composites 285
Teboho Clement Mokhena, Maya Jacob John, Mokgaotsa Jonas Mochane, Asanda
Mtibe, Teboho Simon Motsoeneng, Thabang Hendrica Mokhothu and Cyrus
Alushavhiwi Tshifularo
16.1 Introduction 285
16.2 Classification of Polymers 286
16.3 Preparation of Cellulose Nanocrystals Composites 286
16.3.1 Solution Casting 287
16.3.2 Three Dimensional Printing (3D-Printing) 292
16.3.3 Electrospinning 294
16.3.4 Other Processing Techniques 294
16.4 Cellulose Nanocrystals Reinforced Biopolymers 294
16.4.1 Starch 294
16.4.2 Alginate 295
16.4.3 Chitosan 296
16.4.4 Cellulose 297
16.4.5 Other Biopolymers 298
16.5 Hybrids 298
16.6 Conclusion and Future Trends 300
Acknowledgements 300
References 300
17 Progress on Production of Cellulose from Bacteria 307
Tladi Gideon Mofokeng, Mokgaotsa Jonas Mochane, Vincent Ojijo, Suprakas
Sinha Ray and Teboho Clement Mokhena
17.1 Introduction 307
17.2 Production of Microbial Cellulose (MC) 308
17.3 Applications of Microbial Cellulose (MC) 312
17.3.1 Skin Therapy and Wound Healing System 313
17.3.2 Scaffolds for Artificial Cornea 314
17.3.3 Cardiovascular Implants 315
Future Perspective 315
References 316
18 Recent Developments of Cellulose-Based Biomaterials 319
Asanda Mtibe, Teboho Clement Mokhena, Thabang Hendrica Mokhothu and
Mokgaotsa Jonas Mochane
18.1 Introduction 319
18.2 Extraction of Cellulose Fibers 320
18.3 Nanocellulose 324
18.4 Surface Modification 327
18.4.1 Alkali Treatment (Mercerization) 327
18.4.2 Silane Treatment 328
18.4.3 Acetylation 328
18.5 Cellulose-Based Biomaterials 329
18.5.1 Cellulose-Based Biomaterials for Tissue Engineering 329
18.5.2 Cellulose-Based Biomaterials for Drug Delivery 331
18.5.3 Cellulose-Based Biomaterials for Wound Dressing 332
18.6 Summary and Future Prospect of Cellulose-Based Biomaterials 333
Reference 334
19 Insights of Bacterial Cellulose: Bio and Nano-Polymer Composites Towards
Industrial Application 339
Vishnupriya Selvaraju, Bhavaniramya Sundaresan, Baskaran Dharmar
19.1 Introduction 339
19.1.1 Nanocellulose 340
19.2 Bacterial Cellulose 343
19.2.1 Bacterial Strains Producing Cellulose 343
19.2.2 Different Methods of Bacterial Cellulose Production 344
19.3 Nanocomposites 346
19.3.1 Bio-Nanocomposite-Based on CNF 346
19.3.2 Bio-Nanocomposite-Based on CNC 346
19.3.3 Bacterial Cellulose Nanocomposites 346
19.4 Methods of Synthesis of Bacterial Cellulose Composites 347
19.5 Combination of Bacterial Cellulose with Other Materials 349
19.5.1 Polymer 349
19.5.2 Metals and Solid Materials 350
19.6 Industrial Applications of Bacterial Cellulose Composites 350
19.6.1 Biomedical Applications 350
19.6.2 Food Application 351
19.6.3 Electrical Industry 351
19.7 Future Scope and Conclusion 352
Acknowledgement 352
References 352
20 Biodegradable Polymers Reinforced with Lignin and Lignocellulosic
Materials 357
M.A. Sibeko, V.C. Agbakoba, T.C. Mokhena, P.S. Hlangothi
20.1 Introduction 357
20.2 Biodegradable Polymers 358
20.2.1 Natural Polymers 359
20.2.2 Biodegradable Polyesters 360
20.2.3 Biodegradation 362
20.3 Biodegradable Fillers 362
20.3.1 Plant Fibers as Biodegradable Fillers 363
20.3.2 Cellulose as Biodegradable Fillers 364
20.3.3 Lignin as Biodegradable Fillers 364
20.4 Properties of Different Biopolymers Reinforced with Lignin 365
20.4.1 Surface Morphology 365
20.4.2 Mechanical Properties 366
20.4.3 Thermal Properties 368
20.5 Applications of Bio-Nanocomposites 369
Concluding Remarks 369
Acknowledgements 370
References 370
21 Structure and Properties of Lignin-Based Biopolymers in Polymer
Production 375
Teboho Simon Motsoeneng, Mokgaotsa Jonas Mochane, Teboho Clement Mokhena
and Maya Jacob John
21.1 Introduction 375
21.2 An Insight on the Biopolymers 376
21.2.1 Natural Lignin Biopolymer 377
21.2.2 Drawbacks of Lignin Biopolymer 378
21.3 Extraction and Post-Treatment of Lignin Biomaterial 378
21.3.1 Extraction Methods and their Effect on the Recovery and
Functionality 379
21.3.2 Modification of Lignin Functional Groups 381
21.3.3 Preparation of Lignin-Based Biopolymers Blends (LBBs) 383
21.4 Characterization Methods and Validation of Lignin-Biopolymers 386
21.4.1 Chemical Interaction Between Lignin and Synthetic Polymers 386
21.4.2 Morphology-Property Relationship of the LBB 387
21.5 Indispensability of LBB on the Chemical Release Control in the
Environment 388
21.6 Conclusion and Future Remarks 388
References 389
Index 393
Part 1: Soil Microenvironment and Biotransformation Mechanisms 1
1 Applications of Microorganisms in Agriculture for Nutrients Availability
3
Fehmida Fasim and Bushra Uziar
1.1 Introduction 3
1.1.1 Land and Soil Deterioration 4
1.1.2 Micro-Nutrients Lacks 4
1.2 Biofertilizers 4
1.3 Rhizosphere 5
1.4 Plant Growth Promoting Bacteria 5
1.4.1 Nitrogen Fixation 6
1.4.2 Phosphate Solubilization 8
1.5 Microbial Mechanisms of Phosphate Solubilization 9
1.5.1 Organic Phosphate 9
1.5.2 Organic Phosphate Solubilization 10
1.6 Bacterial and Fungi Coinoculation 11
1.7 Conclusion 11
References 12
2 Native Soil Bacteria: Potential Agent for Bioremediation 17
Ranjan Kumar Mohapatra, Haragobinda Srichandan, Snehasish Mishra and Pankaj
Kumar Parhi
2.1 Introduction 17
2.2 Current Soil Pollution Scenario 19
2.2.1 Soil Pollution by Heavy Metals and Xenobiotic Compounds 19
2.2.2 Soil Pollution by Extensive Agricultural and Animal Husbandry
Practices 20
2.2.3 Pollution Due to Emerging Pollutants (Wastes from Pharmaceutical and
Personal-Care Products) 21
2.2.4 Soil Pollution by Pathogenic Microorganisms 22
2.2.5 Soil Pollution Due to Oil and Petroleum Hydrocarbons 23
2.2.6 Soil Pollution by the Nuclear and Radioactive Wastes 25
2.2.7 Soil Pollution by Military Activities and Warfare 26
2.3 Effects of Soil Pollution 26
2.3.1 Effects of Soil Pollution on Plants 26
2.3.2 Effects of Soil Pollution on Human Health 26
2.4 Diversity of Soil Bacteria from Contaminated Sites 27
2.5 Bioremediation of Toxic Pollutants 27
2.6 Bioremediation Mechanisms 27
2.7 Factors Affecting Bioremediation/Biosorption Process 29
2.8 Microbial Bioremediation Approaches 30
2.8.1 In Situ Bioremediation 30
2.8.2 Ex Situ Bioremediation 30
2.9 Conclusion and Future Prospective 30
Acknowledgements 30
References 31
3 Bacterial Mediated Remediation: A Strategy to Combat Pesticide Residues
In Agricultural Soil 35
Atia Iqbal
3.1 Introduction 35
3.2 Effects of Pesticides 36
3.3 Pesticide Degradation 37
3.4 Bacterial Mediated Biodegradation of Various Pesticides 38
3.4.1 Organophosphate Pesticides Degrading Bacteria 38
3.4.2 Methyl Parathion Mineralizing Bacteria (MP) 39
3.4.3 Mesotrione Degrading Bacteria 39
3.4.4 Aromatic Hydrocarbons Biodegradation 39
3.4.5 Bispyribac Sodium (BS) Degrading Bacteria 40
3.4.6 Carbamates (CRBs) Degradation 40
3.4.7 Propanil Degradation 40
3.4.8 Atrazine Degradation 40
3.4.9 Phenanthrene Degradation 40
3.4.10 Imidacloprid Degradation 41
3.4.11 Endusulfan Degradation 41
3.4.12 DDT 42
3.5 Conclusion 42
References 49
4 Study of Plant Microbial Interaction in Formation of Cheese Production: A
Vegan's Delight 55
Sundaresan Bhavaniramya, Ramar Vanajothi, Selvaraju Vishnupriya and Dharmar
Baskaran
4.1 Introduction 55
4.2 Cheese Concern - Vegan's Delight 57
4.3 Microorganism Interaction Pattern 57
4.4 Types of Microorganism Involved in Cheese Production 57
4.5 Lactic Acid Role in Fermentation 59
4.6 Microorganism Involved in Lactic Acid Fermentation 59
4.7 Streptococcus 60
4.8 Propionibacterium 60
4.9 Leuconostoc 60
4.10 Microorganisms in Flavor Development 61
4.11 Flavor Production 63
4.12 Enzymes Interaction during Ripening of Cheese 63
4.13 Pathways Involved in Cheese Ripening 64
4.14 Microbes of Interest in Flavor Formation 66
4.15 Structure of Flavored Compound in Cheese 67
4.16 Plant-Based Cheese Analogues 67
4.17 Plant-Based Proteins 68
4.18 Aspartic Protease 69
4.19 Cysteine Protease 69
4.20 Plant-Based Milk Alternatives 69
4.21 Types of Vegan Cheese 70
4.22 Future Scope and Conclusion 71
Acknowledgment 71
References 71
5 Microbial Remediation of Pesticide Polluted Soils 75
César Quintela and Cristiano Varrone
5.1 Introduction 75
5.2 Types of Pesticides 77
5.3 Fate of Pesticides in the Environment 81
5.3.1 Factors Affecting Pesticide Fate 81
5.3.2 Pesticides Degradation 84
5.3.3 Pesticide Remediation 85
5.4 Screening for Pesticide Degrading Microorganisms 85
5.4.1 Case Study 86
5.5 Designing Pesticide Degrading Consortia 87
5.5.1 Case Study 88
5.6 Challenges to be Addressed and Future Perspectives 88
References 90
6 Eco-Friendly and Economical Method for Detoxification of Pesticides by
Microbes 95
Anjani Kumar Upadhyay, Abhik Mojumdar, Vishakha Raina and Lopamudra Ray
6.1 Introduction 95
6.2 Classification of Pesticides 96
6.3 Fate of Pesticide in Soil 96
6.3.1 Transport of Pesticides in the Environment 96
6.3.2 Interaction of Pesticides with Soil 98
6.4 Microbial and Phytoremediation of Pesticides 99
6.4.1 Biodegradation and Bioremediation 99
6.4.2 Microbial Remediation of Pesticides 102
6.4.3 Phytoremediation of Pesticides 103
6.4.4 Strategies to Enhance the Efficiency of Bioremediation 103
6.4.5 Metabolic Aspects of Pesticides Bioremediation 105
6.5 Effects on Human and Environment 106
6.6 Advancement in Pesticide Bioremediation 107
6.7 Limitations of Bioremediation 107
6.8 Future Perspectives 108
Acknowledgement 108
References 108
Part 2: Synergistic Effects Between Substrates and Microbes 115
7 Bioleaching: A Bioremediation Process to Treat Hazardous Wastes 117
Haragobinda Srichandan, Ranjan K. Mohapatra, Pankaj K. Parhi and Snehasish
Mishra
7.1 Introduction 117
7.2 Microbes in Bioleaching 118
7.2.1 Bacteria 118
7.2.2 Fungi 119
7.3 Acidophilic Bioleaching 119
7.3.1 Contact (Direct) Mechanism 119
7.3.2 Non-Contact (Indirect) Mechanism 120
7.4 Metal Removal Pathways 120
7.4.1 Thiosulphate Pathway 120
7.4.2 Polysulphide Pathway 121
7.5 Fungal Bioleaching 122
7.6 Various Hazardous Wastes 122
7.6.1 Electronic Wastes (E-Wastes) 123
7.6.2 Spent Petroleum Catalyst 123
7.6.3 Sludge 123
7.6.4 Slag 123
7.7 Applications of Bioleaching Approach to Various Hazardous Wastes 123
7.7.1 Bioleaching of Electronic Wastes 124
7.7.2 Bioleaching of Spent Catalyst 124
7.7.3 Bioleaching of Sludge (Containing Heavy or Toxic metals) 125
7.7.4 Bioleaching of Slag 125
7.8 Conclusion 126
Acknowledgements 126
References 126
8 Microbial Bioremediation of Azo Dyes in Textile Industry Effluent: A
Review on Bioreactor-Based Studies 131
Shweta Agrawal, Devayani Tipre and Shailesh Dave
8.1 Introduction 131
8.2 Microorganism Involved in Dye Bioremediation 132
8.2.1 Bacterial Remediation of Dyes 132
8.2.2 Mycoremediation 135
8.2.3 Phycoremediation 135
8.2.4 Consortial (Co-Culture) Dye Bioremediation 135
8.3 Mechanism of Dye Biodegradation 139
8.3.1 Anaerobic Azo Dye Reduction 139
8.3.2 Aerobic Oxidation of Aromatic Amines 140
8.3.3 Combined Anaerobic-Aerobic Treatment of Azo Dyes 141
8.4 Reactor Design for Dye Bioremediation 141
8.4.1 Anaerobic Reactors 142
8.4.2 Aerobic Reactors 154
8.4.3 Combined (Integrated/Sequential) Bioreactor 157
8.4.4 Combinatorial Approaches 162
8.5 Limitations and Future Prospects 163
8.6 Conclusions 163
References 164
9 Antibiofilm Property of Biosurfactant Produced by Nesterenkonia sp. MCCB
225 Against Shrimp Pathogen, Vibrio harveyi 173
Gopalakrishnan Menon, Issac Sarojini Bright Singh, Prasannan Geetha Preena
and Sumitra Datta
9.1 Introduction 173
9.2 Materials and Methods 174
9.2.1 Isolation, Screening and Identification of Bacteria 174
9.2.2 Biofilm Disruption Studies 175
9.3 Results and Discussion 175
9.3.1 Bacterial Identification 175
9.3.2 Biofilm Disruption Studies 175
9.4 Conclusion 178
Acknowledgements 178
References 178
10 Role of Cr (VI) Resistant Bacillus megaterium in Phytoremediation 181
Rabia Faryad Khan and Rida Batool
10.1 Introduction 181
10.2 Materials and Methods 183
10.2.1 Isolation and Characterization of Chromate Resistant Bacteria 183
10.2.2 Determination of MIC (Minimum Inhibitory Concentration) of Chromate
183
10.2.3 Ribo-Typing of Bacterial Isolate rCrI 183
10.2.4 Estimation of Chromate Reduction Potential 183
10.2.5 Antibiotic and Heavy Metal Resistance Profiling 183
10.2.6 Growth Curve Studies 184
10.2.7 Chromium Uptake Estimation 185
10.2.8 Statistical Analysis 185
10.3 Results 185
10.3.1 Isolation and Characterization of Cr(VI) Resistant Bacterial
Isolates 185
10.3.2 Antibiotic and Heavy Metal Resistance Profiling 186
10.3.3 Estimation of Cr(VI) Reduction Potential 186
10.3.4 Ribo-Typing of Bacterial Isolate 186
10.3.5 Growth Curve Studies 186
10.3.6 Plant Microbe Interaction Studies Under Laboratory Conditions 187
10.3.7 Biochemical Parameters 188
10.3.8 Plant Microbe Interaction Studies Under Field Conditions 190
10.3.8.4 Number of Roots 190
10.3.9 Biochemical Parameters 190
10.4 Discussion 191
10.5 Conclusion 193
Acknowledgment 193
References 193
11 Conjugate Magnetic Nanoparticles and Microbial Remediation, a Genuine
Technology to Remediate Radioactive Waste 197
Bushra Uzair, Anum Shaukat, Fehmida Fasim, Sadaf Maqbool
11.1 Introduction 197
11.2 Use of Magnetic Nanoparticles Conjugates 199
11.2.1 Potential Benefits 199
11.2.2 Synthesis and Application 200
11.2.3 Factors Affecting Sorption 200
11.2.4 Limitations 203
11.3 Microbial Communities 203
11.3.1 Fungi as Radio-Nuclides Remade 203
11.3.2 Immobilization of Radionuclide Through Enzymatic Reduction 204
11.3.3 Immobilization Through Non-Enzymatic Reduction 204
11.3.4 Bio-Sorption of Radio-Nuclides 205
11.3.5 Biostimulation 206
11.3.6 Genetically Modified Microbes 206
11.3.7 Constraints 207
11.4 Conclusion 207
References 208
Part 3: Polyhydroxyalakanoates: Resources, Demands and Sustainability 213
12 Microbial Degradation of Plastics: New Plastic Degraders, Mixed Cultures
and Engineering Strategies 215
Samantha Jenkins, Alba Martínez i Quer, César Fonseca and Cristiano Varrone
12.1 Introduction 215
12.2 Plastics 216
12.2.1 Polyethylene Terephthalate (PET) 217
12.2.2 Low-Density Polyethylene (LDPE) 217
12.3 Plastic Disposal, Reuse and Recycling 218
12.4 Plastic Biodegradation 219
12.4.1 Plastic-Degrading Microorganisms and Enzymes 221
12.4.2 Biofilms and Plastic Biodegradation 224
12.4.3 Boosting Plastic Biodegradation by Physical and Chemical Processes
225
12.4.4 Pathway and Protein Engineering for Enhanced Plastic Biodegradation
226
12.4.5 Designing Plastic Degrading Consortia 229
12.5 Analytical Techniques to Study Plastic Degradation 230
12.6 Future Perspectives 232
References 233
13 Fatty acids as Novel Building-Blocks for Biomaterial Synthesis 239
Prasun Kumar
13.1 Introduction 239
13.2 Polyurethane (PUs) 241
13.3 Polyhydroxyalkanoates (PHAs) 243
13.4 Other Functional Attributes 246
13.4.1 Biosurfactants 246
13.4.2 Antibacterials and Biocontrol Agents 246
13.5 Future Perspectives 249
References 249
14 Polyhydroxyalkanoates: Resources, Demands and Sustainability 253
Binita Bhattacharyya, Himadri Tanaya Behera, Abhik Mojumdar, Vishakha Raina
and Lopamudra Ray
14.1 Introduction 253
14.2 Polyhydroxyalkanoates 255
14.2.1 Properties of PHAs 258
14.2.2 Production of PHA 261
14.2.3 PHA Biosynthesis in Natural Isolates 261
14.2.4 Production of PHA by Digestion of Biological Wastes 262
14.2.5 PHA Production by Recombinant Bacteria 262
14..2.6 Production of PHA by Genetically Engineered Plants 264
14.2.7 PHA Production by Methylotrophs 264
14.2.8 PHA Production Using Waste Vegetable Oil by Pseudomonas sp. Strain
DR2 264
14.2.9 Mass Production of PHA 265
14.3 Applications of PHA 266
14.4 Future Prospects 267
References 267
15 Polyhydroxyalkanoates Synthesis by Bacillus aryabhattai C48 Isolated
from Cassava Dumpsites in South-Western, Nigeria 271
Fadipe Temitope O., Nazia Jamil and Lawal Adekunle K.
15.1 Introduction 271
15.2 Materials and Methods 272
15.2.1 Morphological, Biochemical and Molecular Characterisation 272
15.2.2 Detection of PHA Production 273
15.2.3 Evaluation of PHA Production 273
15.2.4 Extraction of PHA 273
15.2.5 Fourier Transform Infrared Spectroscopy of Extracted PHA 274
15.2.6 Amplification of PhaC and PhaR Genes of Bacillus aryabhattai C48 274
15.3 Results and Discussion 274
15.4 Conclusion 280
Acknowledgements 280
References 280
Part 4: Cellulose-Based Biomaterials: Benefits and Challenges 283
16 Cellulose Nanocrystals-Based Composites 285
Teboho Clement Mokhena, Maya Jacob John, Mokgaotsa Jonas Mochane, Asanda
Mtibe, Teboho Simon Motsoeneng, Thabang Hendrica Mokhothu and Cyrus
Alushavhiwi Tshifularo
16.1 Introduction 285
16.2 Classification of Polymers 286
16.3 Preparation of Cellulose Nanocrystals Composites 286
16.3.1 Solution Casting 287
16.3.2 Three Dimensional Printing (3D-Printing) 292
16.3.3 Electrospinning 294
16.3.4 Other Processing Techniques 294
16.4 Cellulose Nanocrystals Reinforced Biopolymers 294
16.4.1 Starch 294
16.4.2 Alginate 295
16.4.3 Chitosan 296
16.4.4 Cellulose 297
16.4.5 Other Biopolymers 298
16.5 Hybrids 298
16.6 Conclusion and Future Trends 300
Acknowledgements 300
References 300
17 Progress on Production of Cellulose from Bacteria 307
Tladi Gideon Mofokeng, Mokgaotsa Jonas Mochane, Vincent Ojijo, Suprakas
Sinha Ray and Teboho Clement Mokhena
17.1 Introduction 307
17.2 Production of Microbial Cellulose (MC) 308
17.3 Applications of Microbial Cellulose (MC) 312
17.3.1 Skin Therapy and Wound Healing System 313
17.3.2 Scaffolds for Artificial Cornea 314
17.3.3 Cardiovascular Implants 315
Future Perspective 315
References 316
18 Recent Developments of Cellulose-Based Biomaterials 319
Asanda Mtibe, Teboho Clement Mokhena, Thabang Hendrica Mokhothu and
Mokgaotsa Jonas Mochane
18.1 Introduction 319
18.2 Extraction of Cellulose Fibers 320
18.3 Nanocellulose 324
18.4 Surface Modification 327
18.4.1 Alkali Treatment (Mercerization) 327
18.4.2 Silane Treatment 328
18.4.3 Acetylation 328
18.5 Cellulose-Based Biomaterials 329
18.5.1 Cellulose-Based Biomaterials for Tissue Engineering 329
18.5.2 Cellulose-Based Biomaterials for Drug Delivery 331
18.5.3 Cellulose-Based Biomaterials for Wound Dressing 332
18.6 Summary and Future Prospect of Cellulose-Based Biomaterials 333
Reference 334
19 Insights of Bacterial Cellulose: Bio and Nano-Polymer Composites Towards
Industrial Application 339
Vishnupriya Selvaraju, Bhavaniramya Sundaresan, Baskaran Dharmar
19.1 Introduction 339
19.1.1 Nanocellulose 340
19.2 Bacterial Cellulose 343
19.2.1 Bacterial Strains Producing Cellulose 343
19.2.2 Different Methods of Bacterial Cellulose Production 344
19.3 Nanocomposites 346
19.3.1 Bio-Nanocomposite-Based on CNF 346
19.3.2 Bio-Nanocomposite-Based on CNC 346
19.3.3 Bacterial Cellulose Nanocomposites 346
19.4 Methods of Synthesis of Bacterial Cellulose Composites 347
19.5 Combination of Bacterial Cellulose with Other Materials 349
19.5.1 Polymer 349
19.5.2 Metals and Solid Materials 350
19.6 Industrial Applications of Bacterial Cellulose Composites 350
19.6.1 Biomedical Applications 350
19.6.2 Food Application 351
19.6.3 Electrical Industry 351
19.7 Future Scope and Conclusion 352
Acknowledgement 352
References 352
20 Biodegradable Polymers Reinforced with Lignin and Lignocellulosic
Materials 357
M.A. Sibeko, V.C. Agbakoba, T.C. Mokhena, P.S. Hlangothi
20.1 Introduction 357
20.2 Biodegradable Polymers 358
20.2.1 Natural Polymers 359
20.2.2 Biodegradable Polyesters 360
20.2.3 Biodegradation 362
20.3 Biodegradable Fillers 362
20.3.1 Plant Fibers as Biodegradable Fillers 363
20.3.2 Cellulose as Biodegradable Fillers 364
20.3.3 Lignin as Biodegradable Fillers 364
20.4 Properties of Different Biopolymers Reinforced with Lignin 365
20.4.1 Surface Morphology 365
20.4.2 Mechanical Properties 366
20.4.3 Thermal Properties 368
20.5 Applications of Bio-Nanocomposites 369
Concluding Remarks 369
Acknowledgements 370
References 370
21 Structure and Properties of Lignin-Based Biopolymers in Polymer
Production 375
Teboho Simon Motsoeneng, Mokgaotsa Jonas Mochane, Teboho Clement Mokhena
and Maya Jacob John
21.1 Introduction 375
21.2 An Insight on the Biopolymers 376
21.2.1 Natural Lignin Biopolymer 377
21.2.2 Drawbacks of Lignin Biopolymer 378
21.3 Extraction and Post-Treatment of Lignin Biomaterial 378
21.3.1 Extraction Methods and their Effect on the Recovery and
Functionality 379
21.3.2 Modification of Lignin Functional Groups 381
21.3.3 Preparation of Lignin-Based Biopolymers Blends (LBBs) 383
21.4 Characterization Methods and Validation of Lignin-Biopolymers 386
21.4.1 Chemical Interaction Between Lignin and Synthetic Polymers 386
21.4.2 Morphology-Property Relationship of the LBB 387
21.5 Indispensability of LBB on the Chemical Release Control in the
Environment 388
21.6 Conclusion and Future Remarks 388
References 389
Index 393