55,95 €
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
28 °P sammeln
55,95 €
55,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
28 °P sammeln
Als Download kaufen
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
28 °P sammeln
Jetzt verschenken
55,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
28 °P sammeln
  • Format: ePub

Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials.
This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully…mehr

Produktbeschreibung
Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials.

This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research.

Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics.

  • Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes
  • Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks
  • Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles
  • Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Giuseppe Grosso graduated in Physics at the University of Pisa in 1972 and PhD from the Scuola Normale Superiore in 1977, He is a retired full professor of Solid State Physics at the Physics Department of Pisa. The main research topics addressed concern electronic and optical properties of perfect 3D and nanostructured solids, Green's function, recursion and renormalization methods, continued fractions coherent transport, Keldysh formalism, conjugated polymers and molecular crystals, silicon and germanium based photonics.Giuseppe Pastori Parravicini graduated in Physics at the University of Milan in 1963, then moved to the Physics Institute of the University of Pisa where he taught Solid State Physics for more than two decades. From 1990 he moved as full professor to the Department of physics of the University of Pavia where he taught until 2011. Giuseppe Pastori Parravicini has made original contributions in many areas of theoretical Solid State Physics. Among them are the study of lamellar compounds, the theory of symmetries for the classification of electronic states, the electron-phonon interaction, nonlinear optical spectroscopy, many-body effects in excited states in atoms, molecules and solids, quantum transport using the non-equilibrium Keldysh function.