Space Electronic Reconnaissance (eBook, ePUB)
Localization Theories and Methods
Alle Infos zum eBook verschenken
Space Electronic Reconnaissance (eBook, ePUB)
Localization Theories and Methods
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Presents the theories and applications of determining the position of an object in space through the use of satellites As the importance of space reconnaissance technology intensifies, more and more countries are investing money in building their own space reconnaissance satellites. Due to the secrecy and sensitivity of the operations, it is hard to find published papers and journals on the topic outside of military and governmental agencies. This book aims to fill the gap by presenting the various applications and basic principles of a very modern technology. The space electronic…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 34.71MB
- Fucheng GuoSpace Electronic Reconnaissance (eBook, PDF)123,99 €
- Jiaguo LuDesign Technology of Synthetic Aperture Radar (eBook, ePUB)119,99 €
- Roger CochettiMobile Satellite Communications Handbook (eBook, ePUB)117,99 €
- Shusen TanGNSS Systems and Engineering (eBook, ePUB)123,99 €
- Anil K. MainiHandbook of Defence Electronics and Optronics (eBook, ePUB)218,99 €
- Shkelzen CakajGround Station Design and Analysis for LEO Satellites (eBook, ePUB)100,99 €
- Ian MoirMilitary Avionics Systems (eBook, ePUB)142,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 384
- Erscheinungstermin: 5. Mai 2014
- Englisch
- ISBN-13: 9781118542224
- Artikelnr.: 41112704
- Verlag: John Wiley & Sons
- Seitenzahl: 384
- Erscheinungstermin: 5. Mai 2014
- Englisch
- ISBN-13: 9781118542224
- Artikelnr.: 41112704
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Acknowledgments xv
Acronyms xvii
1 Introduction to Space Electronic Reconnaissance Geolocation 1
1.1 Introduction 1
1.2 An Overview of Space Electronic Reconnaissance Geolocation Technology 3
1.2.1 Geolocation of an Emitter on the Earth 3
1.2.2 Tracking of an Emitter on a Satellite 8
1.2.3 Geolocation by Near-Space Platforms 9
1.3 Structure of a Typical SER System 9
References 11
2 Fundamentals of Satellite Orbit and Geolocation 13
2.1 An Introduction to the Satellite and Its Orbit 13
2.1.1 Kepler's Three Laws 13
2.1.2 Classification of Satellite Orbits 15
2.2 Orbit Parameters and State of Satellite 18
2.2.1 Orbit Elements of a Satellite 18
2.2.2 Definition of Several Arguments of Perigee and Their Correlations 20
2.3 Definition of Coordinate Systems and Their Transformations 21
2.3.1 Definition of Coordinate Systems 21
2.3.2 Transformation between Coordinate Systems 25
2.4 Spherical Model of the Earth for Geolocation 27
2.4.1 Regular Spherical Model for Geolocation 27
2.4.2 Ellipsoid Model of the Earth 27
2.5 Coverage Area of a Satellite 30
2.5.1 Approximate Calculation Method for the Coverage Area 30
2.5.2 Examples of Calculation of the Coverage Area 31
2.5.3 Side Reconnaissance Coverage Area 33
2.6 Fundamentals of Geolocation 33
2.6.1 Spatial Geolocation Plane 34
2.6.2 Spatial Line of Position (LOP) 34
2.7 Measurement Index of Geolocation Errors 38
2.7.1 General Definition of Error 38
2.7.2 Geometrical Dilution of Precision (GDOP) 40
2.7.3 Graphical Representation of the Geolocation Error 40
2.7.4 Spherical Error Probability (SEP) and Circular Error Probability
(cep) 41
2.8 Observability Analysis of Geolocation 44
References 45
3 Single-Satellite Geolocation System Based on Direction Finding 47
3.1 Direction Finding Techniques 47
3.1.1 Amplitude Comparison DF Technique 48
3.1.2 Interferometer DF Technique 49
3.1.3 Array-Based DF Technique 55
3.1.4 Other DF Techniques 57
3.2 Single-Satellite LOS Geolocation Method and Analysis 57
3.2.1 Model of LOS Geolocation 57
3.2.2 Solution of LOS Geolocation 59
3.2.3 CRLB of the LOS Geolocation Error 60
3.2.4 Simulation and Analysis of the LOS Geolocation Error 62
3.2.5 Geometric Distribution of the LOS Geolocation Error 63
3.3 Multitimes Statistic LOS Geolocation 64
3.3.1 Single-Satellite Multitimes Triangulation 65
3.3.2 Average for Single-Satellite Multitimes Geolocation 66
3.3.3 Weighted Average for Single-Satellite Multitimes Geolocation 67
3.3.4 Simulation of Single-Satellite LOS Geolocation 67
3.4 Single HEO Satellite LOS Geolocation 73
3.4.1 Analysis of Single GEO Satellite LOS Geolocation 73
3.4.2 Geosynchronous Satellite Multitimes LOS Geolocation 74
References 77
4 Multiple Satellites Geolocation Based on TDOA Measurement 79
4.1 Three-Satellite Geolocation Based on a Regular Sphere 80
4.1.1 Three-Satellite Geolocation Solution Method 80
4.1.2 Multisatellite TDOA Geolocation Method 82
4.1.3 CRLB of a Multisatellite TDOA Geolocation Error 85
4.1.4 Osculation Error of the Spherical Earth Model 86
4.2 Three-Satellite Geolocation Based on the WGS-84 Earth Surface Model 88
4.2.1 Analytical Method 89
4.2.2 Spherical Iteration Method 92
4.2.3 Newton Iteration Method 94
4.2.4 Performance Comparison among the Three Solution Methods 96
4.2.5 Altitude Input Location Algorithm 100
4.3 Ambiguity and No-Solution Problems of Geolocation 102
4.3.1 Ambiguity Problem of Geolocation 102
4.3.2 No-Solution Problem of Geolocation 106
4.4 Error Analysis of Three-Satellite Geolocation 109
4.4.1 Analysis of the Random Geolocation Error 109
4.4.2 Analysis of Bias Caused by Altitude Assumption 112
4.4.3 Influence of Change of the Constellation Geometric Configuration on
GDOP 114
4.5 Calibration Method of the Three-Satellite TDOA Geolocation System 117
4.5.1 Four-Station Calibration Method and Analysis 117
4.5.2 Three-Station Calibration Method 125
References 130
5 Dual-Satellite Geolocation Based on TDOA and FDOA 133
5.1 Introduction of TDOA-FDOA Geolocation by a Dual-Satellite 133
5.1.1 Explanation of Dual-Satellite Geolocation Theory 133
5.1.2 Structure of Dual-Satellite TDOA-FDOA Geolocation System 134
5.2 Dual LEO Satellite TDOA-FDOA Geolocation Method 136
5.2.1 Geolocation Model 136
5.2.2 Solution Method of Algebraic Analysis 138
5.2.3 Approximate Analytical Method for Same-Orbit Satellites 141
5.2.4 Method for Eliminating an Ambiguous Geolocation Point 143
5.3 Error Analysis for TDOA-FDOA Geolocation 144
5.3.1 Analytic Method for the Geolocation Error 144
5.3.2 GDOP of the Dual LEO Satellite Geolocation Error 146
5.3.3 Analysis of Various Factors Influencing GDOP 151
5.4 Dual HEO Satellite TDOA-FDOA Geolocation 152
5.4.1 Dual Geosynchronous Orbit Satellites TDOA-FDOA Geolocation 152
5.4.2 Calibration Method Based on Reference Sources 155
5.4.3 Calibration Method Using Multiple Reference Sources 159
5.4.4 Flow of Calibration and Geolocation 164
5.5 Method of Measuring TDOA and FDOA 165
5.5.1 The Cross-Ambiguity Function 165
5.5.2 Theoretical Analysis on the TDOA-FDOA Measurement Performance 166
5.5.3 Segment Correlation Accumulation Method for CAF Computation 168
5.5.4 Resolution of Multiple Signals of the Same Time and Same Frequency
172
References 174
6 Single-Satellite Geolocation System Based on the Kinematic Principle 177
6.1 Single-Satellite Geolocation Model 177
6.2 Single-Satellite Single-Antenna Frequency-Only Based Geolocation 179
6.2.1 Frequency-Only Based Geolocation Method 179
6.2.2 Analysis of the Geolocation Error 180
6.2.3 Analysis of the Frequency-Only Based Geolocation Error 181
6.3 Single-Satellite Geolocation by the Frequency Changing Rate Only 183
6.3.1 Model of Geolocation by the Frequency Changing Rate Only 183
6.3.2 CRLB of the Geolocation Error 185
6.3.3 Geolocation Simulation 186
6.4 Single-Satellite Single-Antenna TOA-Only Geolocation 186
6.4.1 Model and Method of TOA-Only Geolocation 186
6.4.2 Analysis of the Geolocation Error 189
6.4.3 Geolocation Simulation 192
6.5 Single-Satellite Interferometer Phase Rate of Changing-Only Geolocation
192
6.5.1 Geolocation Model 192
6.5.2 Geolocation Algorithm 195
6.5.3 CRLB of the Geolocation Error 196
6.5.4 Calculation Analysis of the Geolocation Error 197
References 201
7 Geolocation by Near-Space Platforms 203
7.1 An Overview of Geolocation by Near-Space Platforms 203
7.1.1 Near-Space Platform Overview 203
7.1.2 Geolocation by the Near-Space Platform 204
7.2 Multiplatform Triangulation 204
7.2.1 Theory of 2D Triangulation 204
7.2.2 Error Analysis for Dual-Station Triangulation 205
7.2.3 Optimal Geometric Configuration of Observers 207
7.3 Multiplatform TDOA Geolocation 211
7.3.1 Theory of Multiplatform TDOA Geolocation 211
7.3.2 2D TDOA Geolocation Algorithm 212
7.3.3 TDOA Geolocation Using the Altitude Assumption 215
7.3.4 3D TDOA Geolocation Algorithm 215
7.4 Localization Theory by a Single Platform 217
7.4.1 Measurement Model of Localization 218
7.4.2 A 2D Approximate Localization Method 219
7.4.3 MGEKF (Modified Gain Extended Kalman Filter) Localization Method 221
7.4.4 Simulation 223
References 225
8 Satellite-to-Satellite Passive Orbit Determination by Bearings Only 227
8.1 Introduction 227
8.2 Model and Method of Bearings-Only Passive Tracking 227
8.2.1 Mathematic Model in the Case of the Two-Body Problem 228
8.2.2 Tracking Method in the Case of the Two-Body Model 229
8.2.3 Mathematical Model Considering J2 Perturbation of Earth Oblateness
232
8.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 233
8.3 System Observability Analysis 235
8.3.1 Description Method for System Observability 235
8.3.2 Influence of Factors on the State Equation 236
8.3.3 Influence of Factors on the Measurement Equation 237
8.4 Tracking Simulation and Analysis 239
8.4.1 Simulation in the Case of the Two-Body Model 241
8.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 251
8.5 Summary 258
References 259
9 Satellite-to-Satellite Passive Tracking Based on Angle and Frequency
Information 261
9.1 Introduction of Passive Tracking 261
9.2 Tracking Model and Method 262
9.2.1 Mathematic Model in the Case of the Two-Body Model 262
9.2.2 Tracking Method in the Case of the Two-Body Model 263
9.2.3 Mathematical Models Considering J2 Perturbation of Earth Oblateness
266
9.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 267
9.3 System Observability Analysis 268
9.3.1 Influence of Factors of the State Equation 269
9.3.2 Influence of Factors of the Measurement Equation 269
9.4 Simulation and Its Analysis 277
9.4.1 Simulation in the Case of the Two-Body Model 278
9.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 296
9.5 Summary 308
References 309
10 Satellite-to-Satellite Passive Orbit Determination Based on Frequency
Only 311
10.1 The Theory and Mathematical Model of Passive Orbit Determination Based
on Frequency Only 313
10.1.1 The Theory of Orbit Determination Based on Frequency Only 313
10.1.2 The System Model in the Case of the Two-Body Model 313
10.1.3 The System Model for J2 Perturbation of Earth Oblateness 315
10.2 Satellite-to-Satellite Passive Orbit Determination Based on PSO and
Frequency 317
10.2.1 Introduction of Particle Swarm Optimization (PSO) 317
10.2.2 Orbit Determination Method Based on the PSO Algorithm 319
10.3 System Observability Analysis 320
10.3.1 Simulation Scenario 1 322
10.3.2 Simulation Scenario 2 323
10.3.3 Simulation Scenario 3 325
10.4 CRLB of the Orbit Parameter Estimation Error 329
10.5 Orbit Determination and Tracking Simulation and Its Analysis 333
10.5.1 Simulation in the Case of the Two-Body Model 334
10.5.2 Simulation in the Case of Considering the Perturbation 347
References 348
11 A Prospect of Space Electronic Reconnaissance Technology 349
Appendix Transformation of Orbit Elements, State and Coordinates of
Satellites in Two-Body Motion 351
Index 355
Acknowledgments xv
Acronyms xvii
1 Introduction to Space Electronic Reconnaissance Geolocation 1
1.1 Introduction 1
1.2 An Overview of Space Electronic Reconnaissance Geolocation Technology 3
1.2.1 Geolocation of an Emitter on the Earth 3
1.2.2 Tracking of an Emitter on a Satellite 8
1.2.3 Geolocation by Near-Space Platforms 9
1.3 Structure of a Typical SER System 9
References 11
2 Fundamentals of Satellite Orbit and Geolocation 13
2.1 An Introduction to the Satellite and Its Orbit 13
2.1.1 Kepler's Three Laws 13
2.1.2 Classification of Satellite Orbits 15
2.2 Orbit Parameters and State of Satellite 18
2.2.1 Orbit Elements of a Satellite 18
2.2.2 Definition of Several Arguments of Perigee and Their Correlations 20
2.3 Definition of Coordinate Systems and Their Transformations 21
2.3.1 Definition of Coordinate Systems 21
2.3.2 Transformation between Coordinate Systems 25
2.4 Spherical Model of the Earth for Geolocation 27
2.4.1 Regular Spherical Model for Geolocation 27
2.4.2 Ellipsoid Model of the Earth 27
2.5 Coverage Area of a Satellite 30
2.5.1 Approximate Calculation Method for the Coverage Area 30
2.5.2 Examples of Calculation of the Coverage Area 31
2.5.3 Side Reconnaissance Coverage Area 33
2.6 Fundamentals of Geolocation 33
2.6.1 Spatial Geolocation Plane 34
2.6.2 Spatial Line of Position (LOP) 34
2.7 Measurement Index of Geolocation Errors 38
2.7.1 General Definition of Error 38
2.7.2 Geometrical Dilution of Precision (GDOP) 40
2.7.3 Graphical Representation of the Geolocation Error 40
2.7.4 Spherical Error Probability (SEP) and Circular Error Probability
(cep) 41
2.8 Observability Analysis of Geolocation 44
References 45
3 Single-Satellite Geolocation System Based on Direction Finding 47
3.1 Direction Finding Techniques 47
3.1.1 Amplitude Comparison DF Technique 48
3.1.2 Interferometer DF Technique 49
3.1.3 Array-Based DF Technique 55
3.1.4 Other DF Techniques 57
3.2 Single-Satellite LOS Geolocation Method and Analysis 57
3.2.1 Model of LOS Geolocation 57
3.2.2 Solution of LOS Geolocation 59
3.2.3 CRLB of the LOS Geolocation Error 60
3.2.4 Simulation and Analysis of the LOS Geolocation Error 62
3.2.5 Geometric Distribution of the LOS Geolocation Error 63
3.3 Multitimes Statistic LOS Geolocation 64
3.3.1 Single-Satellite Multitimes Triangulation 65
3.3.2 Average for Single-Satellite Multitimes Geolocation 66
3.3.3 Weighted Average for Single-Satellite Multitimes Geolocation 67
3.3.4 Simulation of Single-Satellite LOS Geolocation 67
3.4 Single HEO Satellite LOS Geolocation 73
3.4.1 Analysis of Single GEO Satellite LOS Geolocation 73
3.4.2 Geosynchronous Satellite Multitimes LOS Geolocation 74
References 77
4 Multiple Satellites Geolocation Based on TDOA Measurement 79
4.1 Three-Satellite Geolocation Based on a Regular Sphere 80
4.1.1 Three-Satellite Geolocation Solution Method 80
4.1.2 Multisatellite TDOA Geolocation Method 82
4.1.3 CRLB of a Multisatellite TDOA Geolocation Error 85
4.1.4 Osculation Error of the Spherical Earth Model 86
4.2 Three-Satellite Geolocation Based on the WGS-84 Earth Surface Model 88
4.2.1 Analytical Method 89
4.2.2 Spherical Iteration Method 92
4.2.3 Newton Iteration Method 94
4.2.4 Performance Comparison among the Three Solution Methods 96
4.2.5 Altitude Input Location Algorithm 100
4.3 Ambiguity and No-Solution Problems of Geolocation 102
4.3.1 Ambiguity Problem of Geolocation 102
4.3.2 No-Solution Problem of Geolocation 106
4.4 Error Analysis of Three-Satellite Geolocation 109
4.4.1 Analysis of the Random Geolocation Error 109
4.4.2 Analysis of Bias Caused by Altitude Assumption 112
4.4.3 Influence of Change of the Constellation Geometric Configuration on
GDOP 114
4.5 Calibration Method of the Three-Satellite TDOA Geolocation System 117
4.5.1 Four-Station Calibration Method and Analysis 117
4.5.2 Three-Station Calibration Method 125
References 130
5 Dual-Satellite Geolocation Based on TDOA and FDOA 133
5.1 Introduction of TDOA-FDOA Geolocation by a Dual-Satellite 133
5.1.1 Explanation of Dual-Satellite Geolocation Theory 133
5.1.2 Structure of Dual-Satellite TDOA-FDOA Geolocation System 134
5.2 Dual LEO Satellite TDOA-FDOA Geolocation Method 136
5.2.1 Geolocation Model 136
5.2.2 Solution Method of Algebraic Analysis 138
5.2.3 Approximate Analytical Method for Same-Orbit Satellites 141
5.2.4 Method for Eliminating an Ambiguous Geolocation Point 143
5.3 Error Analysis for TDOA-FDOA Geolocation 144
5.3.1 Analytic Method for the Geolocation Error 144
5.3.2 GDOP of the Dual LEO Satellite Geolocation Error 146
5.3.3 Analysis of Various Factors Influencing GDOP 151
5.4 Dual HEO Satellite TDOA-FDOA Geolocation 152
5.4.1 Dual Geosynchronous Orbit Satellites TDOA-FDOA Geolocation 152
5.4.2 Calibration Method Based on Reference Sources 155
5.4.3 Calibration Method Using Multiple Reference Sources 159
5.4.4 Flow of Calibration and Geolocation 164
5.5 Method of Measuring TDOA and FDOA 165
5.5.1 The Cross-Ambiguity Function 165
5.5.2 Theoretical Analysis on the TDOA-FDOA Measurement Performance 166
5.5.3 Segment Correlation Accumulation Method for CAF Computation 168
5.5.4 Resolution of Multiple Signals of the Same Time and Same Frequency
172
References 174
6 Single-Satellite Geolocation System Based on the Kinematic Principle 177
6.1 Single-Satellite Geolocation Model 177
6.2 Single-Satellite Single-Antenna Frequency-Only Based Geolocation 179
6.2.1 Frequency-Only Based Geolocation Method 179
6.2.2 Analysis of the Geolocation Error 180
6.2.3 Analysis of the Frequency-Only Based Geolocation Error 181
6.3 Single-Satellite Geolocation by the Frequency Changing Rate Only 183
6.3.1 Model of Geolocation by the Frequency Changing Rate Only 183
6.3.2 CRLB of the Geolocation Error 185
6.3.3 Geolocation Simulation 186
6.4 Single-Satellite Single-Antenna TOA-Only Geolocation 186
6.4.1 Model and Method of TOA-Only Geolocation 186
6.4.2 Analysis of the Geolocation Error 189
6.4.3 Geolocation Simulation 192
6.5 Single-Satellite Interferometer Phase Rate of Changing-Only Geolocation
192
6.5.1 Geolocation Model 192
6.5.2 Geolocation Algorithm 195
6.5.3 CRLB of the Geolocation Error 196
6.5.4 Calculation Analysis of the Geolocation Error 197
References 201
7 Geolocation by Near-Space Platforms 203
7.1 An Overview of Geolocation by Near-Space Platforms 203
7.1.1 Near-Space Platform Overview 203
7.1.2 Geolocation by the Near-Space Platform 204
7.2 Multiplatform Triangulation 204
7.2.1 Theory of 2D Triangulation 204
7.2.2 Error Analysis for Dual-Station Triangulation 205
7.2.3 Optimal Geometric Configuration of Observers 207
7.3 Multiplatform TDOA Geolocation 211
7.3.1 Theory of Multiplatform TDOA Geolocation 211
7.3.2 2D TDOA Geolocation Algorithm 212
7.3.3 TDOA Geolocation Using the Altitude Assumption 215
7.3.4 3D TDOA Geolocation Algorithm 215
7.4 Localization Theory by a Single Platform 217
7.4.1 Measurement Model of Localization 218
7.4.2 A 2D Approximate Localization Method 219
7.4.3 MGEKF (Modified Gain Extended Kalman Filter) Localization Method 221
7.4.4 Simulation 223
References 225
8 Satellite-to-Satellite Passive Orbit Determination by Bearings Only 227
8.1 Introduction 227
8.2 Model and Method of Bearings-Only Passive Tracking 227
8.2.1 Mathematic Model in the Case of the Two-Body Problem 228
8.2.2 Tracking Method in the Case of the Two-Body Model 229
8.2.3 Mathematical Model Considering J2 Perturbation of Earth Oblateness
232
8.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 233
8.3 System Observability Analysis 235
8.3.1 Description Method for System Observability 235
8.3.2 Influence of Factors on the State Equation 236
8.3.3 Influence of Factors on the Measurement Equation 237
8.4 Tracking Simulation and Analysis 239
8.4.1 Simulation in the Case of the Two-Body Model 241
8.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 251
8.5 Summary 258
References 259
9 Satellite-to-Satellite Passive Tracking Based on Angle and Frequency
Information 261
9.1 Introduction of Passive Tracking 261
9.2 Tracking Model and Method 262
9.2.1 Mathematic Model in the Case of the Two-Body Model 262
9.2.2 Tracking Method in the Case of the Two-Body Model 263
9.2.3 Mathematical Models Considering J2 Perturbation of Earth Oblateness
266
9.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 267
9.3 System Observability Analysis 268
9.3.1 Influence of Factors of the State Equation 269
9.3.2 Influence of Factors of the Measurement Equation 269
9.4 Simulation and Its Analysis 277
9.4.1 Simulation in the Case of the Two-Body Model 278
9.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 296
9.5 Summary 308
References 309
10 Satellite-to-Satellite Passive Orbit Determination Based on Frequency
Only 311
10.1 The Theory and Mathematical Model of Passive Orbit Determination Based
on Frequency Only 313
10.1.1 The Theory of Orbit Determination Based on Frequency Only 313
10.1.2 The System Model in the Case of the Two-Body Model 313
10.1.3 The System Model for J2 Perturbation of Earth Oblateness 315
10.2 Satellite-to-Satellite Passive Orbit Determination Based on PSO and
Frequency 317
10.2.1 Introduction of Particle Swarm Optimization (PSO) 317
10.2.2 Orbit Determination Method Based on the PSO Algorithm 319
10.3 System Observability Analysis 320
10.3.1 Simulation Scenario 1 322
10.3.2 Simulation Scenario 2 323
10.3.3 Simulation Scenario 3 325
10.4 CRLB of the Orbit Parameter Estimation Error 329
10.5 Orbit Determination and Tracking Simulation and Its Analysis 333
10.5.1 Simulation in the Case of the Two-Body Model 334
10.5.2 Simulation in the Case of Considering the Perturbation 347
References 348
11 A Prospect of Space Electronic Reconnaissance Technology 349
Appendix Transformation of Orbit Elements, State and Coordinates of
Satellites in Two-Body Motion 351
Index 355