- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
SPATIAL ANALYSIS Explore the foundations and latest developments in spatial statistical analysis In Spatial Analysis, two distinguished authors deliver a practical and insightful exploration of the statistical investigation of the interdependence of random variables as a function of their spatial proximity. The book expertly blends theory and application, offering numerous worked examples and exercises at the end of each chapter. Increasingly relevant to fields as diverse as epidemiology, geography, geology, image analysis, and machine learning, spatial statistics is becoming more important to…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 24.56MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 28. April 2022
- Englisch
- ISBN-13: 9781118763575
- Artikelnr.: 63975334
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 28. April 2022
- Englisch
- ISBN-13: 9781118763575
- Artikelnr.: 63975334
0 91 3.8 Spectral Theory for Intrinsic and Generalized Processes 91 3.9 Regularization for Intrinsic and Generalized Processes 95 3.10 Self-Similarity 96 3.11 Simulation 100 3.11.1 General Points 100 3.11.2 The Direct Method 101 3.11.3 Spectral Methods 101 3.12 Dispersion Variance 102 Exercises 104 4 Autoregression and Related Models 115 4.1 Introduction 115 4.2 Background 118 4.3 Moving Averages 120 4.3.1 Lattice Case 120 4.3.2 Continuously Indexed Case 121 4.4 Finite Symmetric Neighborhoods of the Origin in Z d 122 4.5 Simultaneous Autoregressions (SARs) 124 4.5.1 Lattice Case 124 4.5.2 Continuously Indexed Random Fields 125 4.6 Conditional Autoregressions (CARs) 127 4.6.1 Stationary CARs 128 4.6.2 Iterated SARs and CARs 130 4.6.3 Intrinsic CARs 131 4.6.4 CARs on a Lattice Torus 132 4.6.5 Finite Regions 132 4.7 Limits of CAR Models Under Fine Lattice Spacing 134 4.8 Unilateral Autoregressions for Lattice Random Fields 135 4.8.1 Half-spaces in Z d 135 4.8.2 Unilateral Models 136 4.8.3 Quadrant Autoregressions 139 4.9 Markov Random Fields (MRFs) 140 4.9.1 The Spatial Markov Property 140 4.9.2 The Subset Expansion of the Negative Potential Function 143 4.9.3 Characterization of Markov Random Fields in Terms of Cliques 145 4.9.4 Auto-models 147 4.10 Markov Mesh Models 149 4.10.1 Validity 149 4.10.2 Marginalization 150 4.10.3 Markov Random Fields 150 4.10.4 Usefulness 151 Exercises 151 5 Estimation of Spatial Structure 159 5.1 Introduction 159 5.2 Patterns of Behavior 160 5.2.1 One-dimensional Case 160 5.2.2 Two-dimensional Case 161 5.2.3 Nugget Effect 162 5.3 Preliminaries 164 5.3.1 Domain of the Spatial Process 164 5.3.2 Model Specification 164 5.3.3 Spacing of Data 165 5.4 Exploratory and Graphical Methods 166 5.5 Maximum Likelihood for Stationary Models 168 5.5.1 Maximum Likelihood Estimates - Known Mean 169 5.5.2 Maximum Likelihood Estimates - Unknown Mean 171 5.5.3 Fisher Information Matrix and Outfill Asymptotics 172 5.6 Parameterization Issues for the Matérn Scheme 173 5.7 Maximum Likelihood Examples for Stationary Models 174 5.8 Restricted Maximum Likelihood (REML) 179 5.9 Vecchia's Composite Likelihood 180 5.10 REML Revisited with Composite Likelihood 182 5.11 Spatial Linear Model 185 5.11.1 MLEs 186 5.11.2 Outfill Asymptotics for the Spatial Linear Model 188 5.12 REML for the Spatial Linear Model 188 5.13 Intrinsic Random Fields 189 5.14 Infill Asymptotics and Fractal Dimension 192 Exercises 195 6 Estimation for Lattice Models 201 6.1 Introduction 201 6.2 Sample Moments 203 6.3 The AR(1) Process on Z 205 6.4 Moment Methods for Lattice Data 208 6.4.1 Moment Methods for Unilateral Autoregressions (UARs) 209 6.4.2 Moment Estimators for Conditional Autoregression (CAR) Models 210 6.5 Approximate Likelihoods for Lattice Data 212 6.6 Accuracy of the Maximum Likelihood Estimator 215 6.7 The Moment Estimator for a CAR Model 218 Exercises 219 7 Kriging 231 7.1 Introduction 231 7.2 The Prediction Problem 233 7.3 Simple Kriging 236 7.4 Ordinary Kriging 238 7.5 Universal Kriging 240 7.6 Further Details for the Universal Kriging Predictor 241 7.6.1 Transfer Matrices 241 7.6.2 Projection Representation of the Transfer Matrices 242 7.6.3 Second Derivation of the Universal Kriging Predictor 244 7.6.4 A Bordered Matrix Equation for the Transfer Matrices 245 7.6.5 The Augmented Matrix Representation of the Universal Kriging Predictor 245 7.6.6 Summary 247 7.7 Stationary Examples 248 7.8 Intrinsic Random Fields 253 7.8.1 Formulas for the Kriging Predictor and Kriging Variance 253 7.8.2 Conditionally Positive Definite Matrices 254 7.9 Intrinsic Examples 256 7.10 Square Example 258 7.11 Kriging with Derivative Information 259 7.12 Bayesian Kriging 262 7.12.1 Overview 262 7.12.2 Details for Simple Bayesian Kriging 264 7.12.3 Details for Bayesian Kriging with Drift 264 7.13 Kriging and Machine Learning 266 7.14 The Link Between Kriging and Splines 269 7.14.1 Nonparametric Regression 269 7.14.2 Interpolating Splines 271 7.14.3 Comments on Interpolating Splines 273 7.14.4 Smoothing Splines 274 7.15 Reproducing Kernel Hilbert Spaces 274 7.16 Deformations 275 Exercises 277 8 Additional Topics 283 8.1 Introduction 283 8.2 Log-normal Random Fields 284 8.3 Generalized Linear Spatial Mixed Models (GLSMMs) 285 8.4 Bayesian Hierarchical Modeling and Inference 286 8.5 Co-kriging 287 8.6 Spatial-temporal Models 291 8.6.1 General Considerations 291 8.6.2 Examples 292 8.7 Clamped Plate Splines 294 8.8 Gaussian Markov Random Field Approximations 295 8.9 Designing a Monitoring Network 296 Exercises 298 Appendix A Mathematical Background 303 A. 1 Domains for Sequences and Functions 303 A. 2 Classes of Sequences and Functions 305 A.2. 1 Functions on the Domain Rd 305 A.2. 2 Sequences on the Domain Zd 305 A.2. 3 Classes of Functions on the Domain S d1 306 A.2 4 Classes of Sequences on the Domain ZNd, Where N = (n[1], .,n[d]) 306 A. 3 Matrix Algebra 306 A.3. 1 The Spectral Decomposition Theorem 306 A.3. 2 Moore-Penrose Generalized Inverse 307 A.3. 3 Orthogonal Projection Matrices 308 A.3. 4 Partitioned Matrices 308 A.3. 5 Schur Product 309 A.3. 6 Woodbury Formula for a Matrix Inverse 310 A.3. 7 Quadratic Forms 311 A.3. 8 Toeplitz and Circulant Matrices 311 A.3. 9 Tensor Product Matrices 312 A.3. 10 The Spectral Decomposition and Tensor Products 313 A.3. 11 Matrix Derivatives 313 A. 4 Fourier Transforms 313 A. 5 Properties of the Fourier Transform 315 A. 6 Generalizations of the Fourier Transform 318 A. 7 Discrete Fourier Transform and Matrix Algebra 318 A.7. 1 DFT in d = 1Dimension 318 A.7. 2 Properties of the Unitary Matrix G, d = 1 319 A.7. 3 Circulant Matrices and the DFT, d = 1 320 > 1 321 A.7. 5 The Periodogram 322 A. 8 Discrete Cosine Transform (DCT) 322 A.8. 1 One-dimensional Case 322 > 1 323 A.8. 3 Indexing for the Discrete Fourier and Cosine Transforms 323 A. 9 Periodic Approximations to Sequences 324 A. 10 Structured Matrices in d = 1Dimension 325 A. 11 Matrix Approximations for an Inverse Covariance Matrix 327 A.1. 1 The Inverse Covariance Function 328 A.11. 2 The Toeplitz Approximation to
1 330 A.11. 3 The Circulant Approximation to
1 330 A.11. 4 The Folded Circulant Approximation to
1 330 A.11. 5 Comments on the Approximations 331 A.11. 6 Sparsity 332 A. 12 Maximum Likelihood Estimation 332 A.2. 1 General Considerations 332 A.1. 2 The Multivariate Normal Distribution and the Spatial Linear Model 333 A.12. 3 Change of Variables 335 A.12. 4 Profile Log-likelihood 335 A.12. 5 Confidence Intervals 336 A.12. 6 Linked Parameterization 337 A.12. 7 Model Choice 338 A. 13 Bias in Maximum Likelihood Estimation 338 A.3. 1 A General Result 338 A.13. 2 The Spatial Linear Model 340 Appendix B A Brief History of the Spatial Linear Model and the Gaussian Process Approach 347 B.1 Introduction 347 B.2 Matheron and Watson 348 B.3 Geostatistics at Leeds 1977-1987 349 B.3.1 Courses, Publications, Early Dissemination 349 B.3.2 Numerical Problems with Maximum Likelihood 351 B.4 Frequentist vs. Bayesian Inference 352 References and Author Index 355 Index 367
0 91 3.8 Spectral Theory for Intrinsic and Generalized Processes 91 3.9 Regularization for Intrinsic and Generalized Processes 95 3.10 Self-Similarity 96 3.11 Simulation 100 3.11.1 General Points 100 3.11.2 The Direct Method 101 3.11.3 Spectral Methods 101 3.12 Dispersion Variance 102 Exercises 104 4 Autoregression and Related Models 115 4.1 Introduction 115 4.2 Background 118 4.3 Moving Averages 120 4.3.1 Lattice Case 120 4.3.2 Continuously Indexed Case 121 4.4 Finite Symmetric Neighborhoods of the Origin in Z d 122 4.5 Simultaneous Autoregressions (SARs) 124 4.5.1 Lattice Case 124 4.5.2 Continuously Indexed Random Fields 125 4.6 Conditional Autoregressions (CARs) 127 4.6.1 Stationary CARs 128 4.6.2 Iterated SARs and CARs 130 4.6.3 Intrinsic CARs 131 4.6.4 CARs on a Lattice Torus 132 4.6.5 Finite Regions 132 4.7 Limits of CAR Models Under Fine Lattice Spacing 134 4.8 Unilateral Autoregressions for Lattice Random Fields 135 4.8.1 Half-spaces in Z d 135 4.8.2 Unilateral Models 136 4.8.3 Quadrant Autoregressions 139 4.9 Markov Random Fields (MRFs) 140 4.9.1 The Spatial Markov Property 140 4.9.2 The Subset Expansion of the Negative Potential Function 143 4.9.3 Characterization of Markov Random Fields in Terms of Cliques 145 4.9.4 Auto-models 147 4.10 Markov Mesh Models 149 4.10.1 Validity 149 4.10.2 Marginalization 150 4.10.3 Markov Random Fields 150 4.10.4 Usefulness 151 Exercises 151 5 Estimation of Spatial Structure 159 5.1 Introduction 159 5.2 Patterns of Behavior 160 5.2.1 One-dimensional Case 160 5.2.2 Two-dimensional Case 161 5.2.3 Nugget Effect 162 5.3 Preliminaries 164 5.3.1 Domain of the Spatial Process 164 5.3.2 Model Specification 164 5.3.3 Spacing of Data 165 5.4 Exploratory and Graphical Methods 166 5.5 Maximum Likelihood for Stationary Models 168 5.5.1 Maximum Likelihood Estimates - Known Mean 169 5.5.2 Maximum Likelihood Estimates - Unknown Mean 171 5.5.3 Fisher Information Matrix and Outfill Asymptotics 172 5.6 Parameterization Issues for the Matérn Scheme 173 5.7 Maximum Likelihood Examples for Stationary Models 174 5.8 Restricted Maximum Likelihood (REML) 179 5.9 Vecchia's Composite Likelihood 180 5.10 REML Revisited with Composite Likelihood 182 5.11 Spatial Linear Model 185 5.11.1 MLEs 186 5.11.2 Outfill Asymptotics for the Spatial Linear Model 188 5.12 REML for the Spatial Linear Model 188 5.13 Intrinsic Random Fields 189 5.14 Infill Asymptotics and Fractal Dimension 192 Exercises 195 6 Estimation for Lattice Models 201 6.1 Introduction 201 6.2 Sample Moments 203 6.3 The AR(1) Process on Z 205 6.4 Moment Methods for Lattice Data 208 6.4.1 Moment Methods for Unilateral Autoregressions (UARs) 209 6.4.2 Moment Estimators for Conditional Autoregression (CAR) Models 210 6.5 Approximate Likelihoods for Lattice Data 212 6.6 Accuracy of the Maximum Likelihood Estimator 215 6.7 The Moment Estimator for a CAR Model 218 Exercises 219 7 Kriging 231 7.1 Introduction 231 7.2 The Prediction Problem 233 7.3 Simple Kriging 236 7.4 Ordinary Kriging 238 7.5 Universal Kriging 240 7.6 Further Details for the Universal Kriging Predictor 241 7.6.1 Transfer Matrices 241 7.6.2 Projection Representation of the Transfer Matrices 242 7.6.3 Second Derivation of the Universal Kriging Predictor 244 7.6.4 A Bordered Matrix Equation for the Transfer Matrices 245 7.6.5 The Augmented Matrix Representation of the Universal Kriging Predictor 245 7.6.6 Summary 247 7.7 Stationary Examples 248 7.8 Intrinsic Random Fields 253 7.8.1 Formulas for the Kriging Predictor and Kriging Variance 253 7.8.2 Conditionally Positive Definite Matrices 254 7.9 Intrinsic Examples 256 7.10 Square Example 258 7.11 Kriging with Derivative Information 259 7.12 Bayesian Kriging 262 7.12.1 Overview 262 7.12.2 Details for Simple Bayesian Kriging 264 7.12.3 Details for Bayesian Kriging with Drift 264 7.13 Kriging and Machine Learning 266 7.14 The Link Between Kriging and Splines 269 7.14.1 Nonparametric Regression 269 7.14.2 Interpolating Splines 271 7.14.3 Comments on Interpolating Splines 273 7.14.4 Smoothing Splines 274 7.15 Reproducing Kernel Hilbert Spaces 274 7.16 Deformations 275 Exercises 277 8 Additional Topics 283 8.1 Introduction 283 8.2 Log-normal Random Fields 284 8.3 Generalized Linear Spatial Mixed Models (GLSMMs) 285 8.4 Bayesian Hierarchical Modeling and Inference 286 8.5 Co-kriging 287 8.6 Spatial-temporal Models 291 8.6.1 General Considerations 291 8.6.2 Examples 292 8.7 Clamped Plate Splines 294 8.8 Gaussian Markov Random Field Approximations 295 8.9 Designing a Monitoring Network 296 Exercises 298 Appendix A Mathematical Background 303 A. 1 Domains for Sequences and Functions 303 A. 2 Classes of Sequences and Functions 305 A.2. 1 Functions on the Domain Rd 305 A.2. 2 Sequences on the Domain Zd 305 A.2. 3 Classes of Functions on the Domain S d1 306 A.2 4 Classes of Sequences on the Domain ZNd, Where N = (n[1], .,n[d]) 306 A. 3 Matrix Algebra 306 A.3. 1 The Spectral Decomposition Theorem 306 A.3. 2 Moore-Penrose Generalized Inverse 307 A.3. 3 Orthogonal Projection Matrices 308 A.3. 4 Partitioned Matrices 308 A.3. 5 Schur Product 309 A.3. 6 Woodbury Formula for a Matrix Inverse 310 A.3. 7 Quadratic Forms 311 A.3. 8 Toeplitz and Circulant Matrices 311 A.3. 9 Tensor Product Matrices 312 A.3. 10 The Spectral Decomposition and Tensor Products 313 A.3. 11 Matrix Derivatives 313 A. 4 Fourier Transforms 313 A. 5 Properties of the Fourier Transform 315 A. 6 Generalizations of the Fourier Transform 318 A. 7 Discrete Fourier Transform and Matrix Algebra 318 A.7. 1 DFT in d = 1Dimension 318 A.7. 2 Properties of the Unitary Matrix G, d = 1 319 A.7. 3 Circulant Matrices and the DFT, d = 1 320 > 1 321 A.7. 5 The Periodogram 322 A. 8 Discrete Cosine Transform (DCT) 322 A.8. 1 One-dimensional Case 322 > 1 323 A.8. 3 Indexing for the Discrete Fourier and Cosine Transforms 323 A. 9 Periodic Approximations to Sequences 324 A. 10 Structured Matrices in d = 1Dimension 325 A. 11 Matrix Approximations for an Inverse Covariance Matrix 327 A.1. 1 The Inverse Covariance Function 328 A.11. 2 The Toeplitz Approximation to
1 330 A.11. 3 The Circulant Approximation to
1 330 A.11. 4 The Folded Circulant Approximation to
1 330 A.11. 5 Comments on the Approximations 331 A.11. 6 Sparsity 332 A. 12 Maximum Likelihood Estimation 332 A.2. 1 General Considerations 332 A.1. 2 The Multivariate Normal Distribution and the Spatial Linear Model 333 A.12. 3 Change of Variables 335 A.12. 4 Profile Log-likelihood 335 A.12. 5 Confidence Intervals 336 A.12. 6 Linked Parameterization 337 A.12. 7 Model Choice 338 A. 13 Bias in Maximum Likelihood Estimation 338 A.3. 1 A General Result 338 A.13. 2 The Spatial Linear Model 340 Appendix B A Brief History of the Spatial Linear Model and the Gaussian Process Approach 347 B.1 Introduction 347 B.2 Matheron and Watson 348 B.3 Geostatistics at Leeds 1977-1987 349 B.3.1 Courses, Publications, Early Dissemination 349 B.3.2 Numerical Problems with Maximum Likelihood 351 B.4 Frequentist vs. Bayesian Inference 352 References and Author Index 355 Index 367