The book starts with a geometrical approach to complex variables while visualizing complex functions as maps involving translations, rotations and scaling transformations enhancing understanding and application of integral transforms. The Laplace transform offers an elegant technique for solving linear differential equations with constant coefficients without the risk of interference besides generating non-periodic solutions as opposed to the Fourier transform. The Eulerian functions follow and subsequently generalized theory of special functions which includes hypergeometric functions , cylindrical functions then orthogonal polynomials (Jacobi, ultra-spherical, Gegenbauer, Tschebycheff, Legendre, Laguerre and Hermite polynomials then spherical functions) with parabolic cylinder, elliptic, Lame, Mathieu functions in addition to relations between orthogonal polynomials and confluent hypergeometric functions.
The textbook covers special functions at the undergraduate and graduate levels in detail, with an elegant mathematical treatment, contemporary style and rejuvenated approach.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.