Hongjian Liu, Zidong Wang, Lifeng Ma
Stability Analysis and State Estimation of Memristive Neural Networks (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Hongjian Liu, Zidong Wang, Lifeng Ma
Stability Analysis and State Estimation of Memristive Neural Networks (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book discusses the stability analysis and estimator design problems for discrete-time memristive neural networks subject to time-delays and approaches state estimation from different perspectives. Each chapter includes analysis problems and application of theories and techniques to pertinent research areas.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 4.47MB
Andere Kunden interessierten sich auch für
- Yang LiuState Estimation and Fault Diagnosis under Imperfect Measurements (eBook, PDF)48,95 €
- Licheng WangData-Rate-Constrained State Estimation and Control of Complex Networked Systems (eBook, PDF)51,95 €
- Bo ShenControl and State Estimation for Dynamical Network Systems with Complex Samplings (eBook, PDF)48,95 €
- Hongjian LiuStability Analysis and State Estimation of Memristive Neural Networks (eBook, ePUB)48,95 €
- Baoping JiangSliding Mode Control of Semi-Markovian Jump Systems (eBook, PDF)54,95 €
- Ktm Udayanga HemapalaSmart Microgrid Systems (eBook, PDF)48,95 €
- Yong ZhangFilter-Based Fault Diagnosis and Remaining Useful Life Prediction (eBook, PDF)48,95 €
-
-
-
This book discusses the stability analysis and estimator design problems for discrete-time memristive neural networks subject to time-delays and approaches state estimation from different perspectives. Each chapter includes analysis problems and application of theories and techniques to pertinent research areas.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 234
- Erscheinungstermin: 16. August 2021
- Englisch
- ISBN-13: 9781000415001
- Artikelnr.: 62167450
- Verlag: Taylor & Francis
- Seitenzahl: 234
- Erscheinungstermin: 16. August 2021
- Englisch
- ISBN-13: 9781000415001
- Artikelnr.: 62167450
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Hongjian Liu is currently a Professor in the School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, China. His current research interests include filtering theory, memristive neural networks and network communication systems. He is a very active reviewer for many international journals.
Zidong Wang is currently Professor of Dynamical Systems and Computing at Brunel University London in the United Kingdom. His research interests include dynamical systems, signal processing, bioinformatics, control theory and applications.
Lifeng Ma is currently a Professor with the School of Automation, Nanjing University of Science and Technology, Nanjing, China. His current research interests include nonlinear control and signal processing, variable structure control, distributed control and filtering, time-varying systems, and multi-agent systems.
Zidong Wang is currently Professor of Dynamical Systems and Computing at Brunel University London in the United Kingdom. His research interests include dynamical systems, signal processing, bioinformatics, control theory and applications.
Lifeng Ma is currently a Professor with the School of Automation, Nanjing University of Science and Technology, Nanjing, China. His current research interests include nonlinear control and signal processing, variable structure control, distributed control and filtering, time-varying systems, and multi-agent systems.
1. Introduction. 2. H1 State Estimation for Discrete
Time Memristive Recurrent Neural Networks with Stochastic Time
Delays. 3. Event
Triggered H1 State Estimation for Delayed Stochastic Memristive Neural Networks with Missing Measurements: The Discrete Time Case. 4. H1 State Estimation for Discrete
Time Stochastic Memristive BAM Neural Networks with Mixed Time
Delays. 5. Stability Analysis for Discrete
Time Stochastic Memristive Neural Networks with Both Leakage and Probabilistic Delays. 6. Delay
Distribution
Dependent H1 State Estimation for Discrete
Time Memristive Neural Networks with Mixed Time
Delays and Fading Measurements. 7. On State Estimation for Discrete Time
Delayed Memristive Neural Networks under the WTOD Protocol: A Resilient Set
Membership Approach. 8. On Finite
Horizon H1 State Estimation for Discrete
Time Delayed Memristive Neural Networks under Stochastic Communication Protocol. 9. Resilient H1 State Estimation for Discrete
Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event
Triggered Mechanism. 10. H1 and l2
l1 State Estimation for Delayed Memristive Neural Networks on Finite Horizon: The Round
Robin Protocol.
Time Memristive Recurrent Neural Networks with Stochastic Time
Delays. 3. Event
Triggered H1 State Estimation for Delayed Stochastic Memristive Neural Networks with Missing Measurements: The Discrete Time Case. 4. H1 State Estimation for Discrete
Time Stochastic Memristive BAM Neural Networks with Mixed Time
Delays. 5. Stability Analysis for Discrete
Time Stochastic Memristive Neural Networks with Both Leakage and Probabilistic Delays. 6. Delay
Distribution
Dependent H1 State Estimation for Discrete
Time Memristive Neural Networks with Mixed Time
Delays and Fading Measurements. 7. On State Estimation for Discrete Time
Delayed Memristive Neural Networks under the WTOD Protocol: A Resilient Set
Membership Approach. 8. On Finite
Horizon H1 State Estimation for Discrete
Time Delayed Memristive Neural Networks under Stochastic Communication Protocol. 9. Resilient H1 State Estimation for Discrete
Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event
Triggered Mechanism. 10. H1 and l2
l1 State Estimation for Delayed Memristive Neural Networks on Finite Horizon: The Round
Robin Protocol.
1. Introduction. 2. H1 State Estimation for Discrete
Time Memristive Recurrent Neural Networks with Stochastic Time
Delays. 3. Event
Triggered H1 State Estimation for Delayed Stochastic Memristive Neural Networks with Missing Measurements: The Discrete Time Case. 4. H1 State Estimation for Discrete
Time Stochastic Memristive BAM Neural Networks with Mixed Time
Delays. 5. Stability Analysis for Discrete
Time Stochastic Memristive Neural Networks with Both Leakage and Probabilistic Delays. 6. Delay
Distribution
Dependent H1 State Estimation for Discrete
Time Memristive Neural Networks with Mixed Time
Delays and Fading Measurements. 7. On State Estimation for Discrete Time
Delayed Memristive Neural Networks under the WTOD Protocol: A Resilient Set
Membership Approach. 8. On Finite
Horizon H1 State Estimation for Discrete
Time Delayed Memristive Neural Networks under Stochastic Communication Protocol. 9. Resilient H1 State Estimation for Discrete
Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event
Triggered Mechanism. 10. H1 and l2
l1 State Estimation for Delayed Memristive Neural Networks on Finite Horizon: The Round
Robin Protocol.
Time Memristive Recurrent Neural Networks with Stochastic Time
Delays. 3. Event
Triggered H1 State Estimation for Delayed Stochastic Memristive Neural Networks with Missing Measurements: The Discrete Time Case. 4. H1 State Estimation for Discrete
Time Stochastic Memristive BAM Neural Networks with Mixed Time
Delays. 5. Stability Analysis for Discrete
Time Stochastic Memristive Neural Networks with Both Leakage and Probabilistic Delays. 6. Delay
Distribution
Dependent H1 State Estimation for Discrete
Time Memristive Neural Networks with Mixed Time
Delays and Fading Measurements. 7. On State Estimation for Discrete Time
Delayed Memristive Neural Networks under the WTOD Protocol: A Resilient Set
Membership Approach. 8. On Finite
Horizon H1 State Estimation for Discrete
Time Delayed Memristive Neural Networks under Stochastic Communication Protocol. 9. Resilient H1 State Estimation for Discrete
Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event
Triggered Mechanism. 10. H1 and l2
l1 State Estimation for Delayed Memristive Neural Networks on Finite Horizon: The Round
Robin Protocol.