40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.95MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 244
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789400911833
- Artikelnr.: 44171082
- Verlag: Springer Netherlands
- Seitenzahl: 244
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789400911833
- Artikelnr.: 44171082
1. Elements of the Theory of Random Fields.- 1.1 Basic concepts and notation.- 1.2 Homogeneous and isotropic random fields.- 1.3 Spectral properties of higher order moments of random fields.- 1.4 Some properties of the uniform distribution.- 1.5 Variances of integrals of random fields.- 1.6 Weak dependence conditions for random fields.- 1.7 A central limit theorem.- 1.8 Moment inequalities.- 1.9 Invariance principle.- 2. Limit Theorems for Functionals of Gaussian Fields.- 2.1 Variances of integrals of local Gaussian functionals.- 2.2 Reduction conditions for strongly dependent random fields.- 2.3 Central limit theorem for non-linear transformations of Gaussian fields.- 2.4 Approximation for distribution of geometric functional of Gaussian fields.- 2.5 Reduction conditions for weighted functionals.- 2.6 Reduction conditions for functionals depending on a parameter.- 2.7 Reduction conditions for measures of excess over a moving level.- 2.8 Reduction conditions for characteristics of the excess over a radial surface.- 2.9 Multiple stochastic integrals.- 2.10 Conditions for attraction of functionals of homogeneous isotropic Gaussian fields to semi-stable processes.- 3. Estimation of Mathematical Expectation.- 3.1 Asymptotic properties of the least squares estimators for linear regression coefficients.- 3.2 Consistency of the least squares estimate under non-linear parametrization.- 3.3 Asymptotic expansion of least squares estimators.- 3.4 Asymptotic normality and convergence of moments for least squares estimators.- 3.5 Consistency of the least moduli estimators.- 3.6 Asymptotic normality of the least moduli estimators.- 4. Estimation of the Correlation Function.- 4.1 Definition of estimators.- 4.2 Consistency.- 4.3 Asymptotic normality.- 4.4 Asymptotic normality. The caseof a homogeneous isotropic field.- 4.5 Estimation by means of several independent sample functions.- 4.6 Confidence intervals.- References.- Comments.
1. Elements of the Theory of Random Fields.- 1.1 Basic concepts and notation.- 1.2 Homogeneous and isotropic random fields.- 1.3 Spectral properties of higher order moments of random fields.- 1.4 Some properties of the uniform distribution.- 1.5 Variances of integrals of random fields.- 1.6 Weak dependence conditions for random fields.- 1.7 A central limit theorem.- 1.8 Moment inequalities.- 1.9 Invariance principle.- 2. Limit Theorems for Functionals of Gaussian Fields.- 2.1 Variances of integrals of local Gaussian functionals.- 2.2 Reduction conditions for strongly dependent random fields.- 2.3 Central limit theorem for non-linear transformations of Gaussian fields.- 2.4 Approximation for distribution of geometric functional of Gaussian fields.- 2.5 Reduction conditions for weighted functionals.- 2.6 Reduction conditions for functionals depending on a parameter.- 2.7 Reduction conditions for measures of excess over a moving level.- 2.8 Reduction conditions for characteristics of the excess over a radial surface.- 2.9 Multiple stochastic integrals.- 2.10 Conditions for attraction of functionals of homogeneous isotropic Gaussian fields to semi-stable processes.- 3. Estimation of Mathematical Expectation.- 3.1 Asymptotic properties of the least squares estimators for linear regression coefficients.- 3.2 Consistency of the least squares estimate under non-linear parametrization.- 3.3 Asymptotic expansion of least squares estimators.- 3.4 Asymptotic normality and convergence of moments for least squares estimators.- 3.5 Consistency of the least moduli estimators.- 3.6 Asymptotic normality of the least moduli estimators.- 4. Estimation of the Correlation Function.- 4.1 Definition of estimators.- 4.2 Consistency.- 4.3 Asymptotic normality.- 4.4 Asymptotic normality. The caseof a homogeneous isotropic field.- 4.5 Estimation by means of several independent sample functions.- 4.6 Confidence intervals.- References.- Comments.