47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. Unfortunately, few research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB and case study data sets, this is the first book to explicitly explain how to perform statistical analysis on brain imaging data.

Produktbeschreibung
The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. Unfortunately, few research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB and case study data sets, this is the first book to explicitly explain how to perform statistical analysis on brain imaging data.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Moo K. Chung, Ph.D. is an associate professor in the Department of Biostatistics and Medical Informatics at the University of Wisconsin-Madison. He is also affiliated with the Waisman Laboratory for Brain Imaging and Behavior. He has won the Vilas Associate Award for his applied topological research (persistent homology) to medical imaging and the Editor's Award for best paper published in Journal of Speech, Language, and Hearing Research. Dr. Chung received a Ph.D. in statistics from McGill University. His main research area is computational neuroanatomy, concentrating on the methodological development required for quantifying and contrasting anatomical shape variations in both normal and clinical populations at the macroscopic level using various mathematical, statistical, and computational techniques.