The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The book offers a chapter-length primer on probability and statistical risk (section I), followed by a review of standard problems and procedures, all from a statistical decision theory viewpoint (section II). The heart of the book is section III, which shows in detail how to handle many such problems using the Portfolio Safeguard software package. ... The book will mostly benefit readers who use or consider using Portfolio Safeguard and are looking for a complementary, textbook-style treatment." (Jörg Stoye, zbMATH, Vol. 1291, 2014)