Statistical Processing Techniques for Noisy Images presents a statistical framework to design algorithms for target detection, tracking, segmentation and classification (identification). Its main goal is to provide the reader with efficient tools for developing algorithms that solve his/her own image processing applications. In particular, such topics as hypothesis test-based detection, fast active contour segmentation and algorithm design for non-conventional imaging systems are comprehensively treated, from theoretical foundations to practical implementations. With a large number of illustrations and practical examples, this book serves as an excellent textbook or reference book for senior or graduate level courses on statistical signal/image processing, as well as a reference for researchers in related fields.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.