48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: ePub

The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications in other fields of science and industrial applications. This work is the second in a series of two on this subject.

Produktbeschreibung
The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications in other fields of science and industrial applications. This work is the second in a series of two on this subject.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Roland Kjellander earned a master's degree in chemical engineering, a Ph.D. in physical chemistry, and the title of docent in physical chemistry from the Royal Institute of Technology, Stockholm, Sweden. He is currently a professor emeritus of physical chemistry in the Department of Chemistry and Molecular Biology at the University of Gothenburg, Sweden. His previous appointments include roles in various academic and research capacities at the University of Gothenburg, Sweden; Australian National University, Canberra;

Royal Institute of Technology, Stockholm, Sweden; Massachusetts Institute of Technology, Cambridge, USA; and Harvard Medical School, Boston, USA. He was awarded the 2004 Pedagogical Prize from the University of Gothenburg, Sweden, and the 2007 Norblad-Ekstrand Medal from the Swedish Chemical Society. Professor Kjellander's field of research is statistical mechanics, in particular liquid state theory.