Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Apply statistics in business to achieve performance improvement Statistical Thinking: Improving Business Performance, 3rd Edition helps managers understand the role of statistics in implementing business improvements. It guides professionals who are learning statistics in order to improve performance in business and industry. It also helps graduate and undergraduate students understand the strategic value of data and statistics in arriving at real business solutions. Instruction in the book is based on principles of effective learning, established by educational and behavioral…mehr
Apply statistics in business to achieve performance improvement
Statistical Thinking: Improving Business Performance, 3rd Edition helps managers understand the role of statistics in implementing business improvements. It guides professionals who are learning statistics in order to improve performance in business and industry. It also helps graduate and undergraduate students understand the strategic value of data and statistics in arriving at real business solutions. Instruction in the book is based on principles of effective learning, established by educational and behavioral research.
The authors cover both practical examples and underlying theory, both the big picture and necessary details. Readers gain a conceptual understanding and the ability to perform actionable analyses. They are introduced to data skills to improve business processes, including collecting the appropriate data, identifying existing data limitations, and analyzing data graphically. The authors also provide an in-depth look at JMP software, including its purpose, capabilities, and techniques for use.
Updates to this edition include:
A new chapter on data, assessing data pedigree (quality), and acquisition tools
Discussion of the relationship between statistical thinking and data science
Explanation of the proper role and interpretation of p-values (understanding of the dangers of "p-hacking")
Differentiation between practical and statistical significance
Introduction of the emerging discipline of statistical engineering
Explanation of the proper role of subject matter theory in order to identify causal relationships
A holistic framework for variation that includes outliers, in addition to systematic and random variation
Revised chapters based on significant teaching experience
Content enhancements based on student input
This book helps readers understand the role of statistics in business before they embark on learning statistical techniques.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
DR. ROGER W. HOERL is an associate professor at Union College where he teaches statistics, engineering statistics, design of experiments, regression analysis, and big data analytics. Previously, he led the Applied Statistics Laboratory at GE Global Research.
DR. RONALD D. SNEE is founder and president of Snee Associates, an authority on designing and implementing organizational improvement and cost-reduction solutions. Prior to this role, he worked at the DuPont Company in a variety of assignments. Snee has co-authored five books and published more than 330 articles on process improvement, quality, and statistics.
Inhaltsangabe
Preface xiii
Introduction to JMP xvii
Part One Statistical Thinking Concepts 1
Chapter 1 Need for Business Improvement 3
Today's Business Realities and the Need to Improve 4
We Now Have Two Jobs: A Model for Business Improvement 8
New Improvement Approaches Require Statistical Thinking 12
Principles of Statistical Thinking 17
Applications of Statistical Thinking 22
Summary and Looking Forward 23
Exercises: Chapter 1 24
Notes 25
Chapter 2 Data: The Missing Link 27
Why Do We Need Data? 28
Types of Data 29
All Data are Not Created Equal 32
Practical Sampling Tips to Ensure Data Quality 34
What about Data Quantity? 38
Every Data Set Has a Story: The Data Pedigree 40
The Measurement System 42
Summarizing Data 48
Summary and Looking Forward 52
Exercises: Chapter 2 52
Notes 54
Chapter 3 Statistical Thinking Strategy 55
Case Study: The Effect of Advertising on Sales 56
Case Study: Improvement of a Soccer Team's Performance 62
Statistical Thinking Strategy 71
Variation in Business Processes 76
Synergy between Data and Subject Matter Knowledge 82
Dynamic Nature of Business Processes 84
Value of Graphics--Discovering the Unexpected 86
Summary and Looking Forward 89
Project Update 89
Exercises: Chapter 3 90
Notes 91
Chapter 4 Understanding Business Processes 93
Examples of Business Processes 94
SIPOC Model for Processes 100
Identifying Business Processes 102
Analysis of Business Processes 103
Systems of Processes 119
Summary and Looking Forward 122
Project Update 123
Exercises: Chapter 4 124
Notes 126
Part Two Holistic Improvement: Frameworks and Basic Tools 127
Chapter 5 Holistic Improvement: Tactics to Deploy Statistical Thinking 129
Case Study: Resolving Customer Complaints of Baby Wipe Flushability 130
The Problem-Solving Framework 137
Case Study: Reducing Resin Output Variation 141
The Process Improvement Framework 147
Statistical Engineering 153
Statistical Engineering Case Study: Predicting Corporate Defaults 154
A Framework for Statistical Engineering Projects 158
Summary and Looking Forward 164
Project Update 165
Exercises: Chapter 5 166
Notes 167
Chapter 6 Process Improvement and Problem-Solving Tools 169
Practical Tools 172
Knowledge-Based Tools 191
Graphical Tools 207
Analytical Tools 228
Summary and Looking Forward 265
Project Update 265
Exercises: Chapter 6 266
Notes 271
Part Three Formal Statistical Methods 273
Chapter 7 Building and Using Models 275
Examples of Business Models 276
Types and Uses of Models 279
Regression Modeling Process 282
Building Models with One Predictor Variable 290
Building Models with Several Predictor Variables 307
Multicollinearity: Another Model Check 315
Some Limitations of Using Observational Data 317
Summary and Looking Forward 319
Project Update 321
Exercises: Chapter 7 321
Notes 346
Chapter 8 Using Process Experimentation to Build Models 347