28,95 €
28,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
14 °P sammeln
28,95 €
28,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
14 °P sammeln
Als Download kaufen
28,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
14 °P sammeln
Jetzt verschenken
28,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
14 °P sammeln
  • Format: ePub

Get your statistics basics right before diving into the world of data science
About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; | Implement statistics in data science tasks such as data cleaning, mining, and analysis | Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For
This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with
…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 3.13MB
  • FamilySharing(5)
Produktbeschreibung
Get your statistics basics right before diving into the world of data science

About This Book
  • No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs;
  • Implement statistics in data science tasks such as data cleaning, mining, and analysis
  • Learn all about probability, statistics, numerical computations, and more with the help of R programs
Who This Book Is For

This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful.

What You Will Learn
  • Analyze the transition from a data developer to a data scientist mindset
  • Get acquainted with the R programs and the logic used for statistical computations
  • Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more
  • Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis
  • Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks
  • Get comfortable with performing various statistical computations for data science programmatically
In Detail

Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on.

This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks.

By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically.

Style and approach

Step by step comprehensive guide with real world examples


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
James D. Miller is an IBM Certified Expert, Master Consultant, and application/system architect with over 35 years of applications and system design/development experience across multiple platforms, technologies, and data formats, including big data. His experience includes IBM Planning Analytics, BI, web architecture/design, systems analysis, GUI design/testing, data modeling, and OLAP design/development. He has also worked on client/server, web, and mainframe applications. He has authored numerous books, including Implementing Splunk, Second Edition; Mastering Splunk, Hands-On Machine Learning with IBM Watson, Watson Projects, Statistics for Data Science, and Mastering Predictive Analytics with R, Second Edition.