Das Buch richtet sich an Studierende der Mathematik höheren Semesters, die bereits Vorkenntnisse in Wahrscheinlichkeitstheorie besitzen. Behandelt werden sowohl Methoden des Supervised Learning und Reinforcement Learning als auch des Unsupervised Learning. Der Umfang entspricht einer einsemestrigen vierstündigen Vorlesung.
Die einzelnen Kapitel sind weitestgehend unabhängig voneinander lesbar, am Ende jedes Kapitels kann das erworbene Wissen anhand von Übungsaufgaben und durch Implementierung der Verfahren überprüft werden. Quelltexte in der Programmiersprache R stehen auf der Springer-Produktseite zum Buch zur Verfügung.
Der Autor
Dr. Stefan Richter studierte und promovierte an der Universität Heidelberg. Im Anschluss hatte er eine Vertretungsprofessur am Institut für Mathematische Stochastik der TU Braunschweig inne, in deren Rahmen er unter anderem statistisches und maschinelles Lernen für Mathematiker lehrte. Derzeit ist er Postdoc der Arbeitsgruppe Statistik stochastischer Prozesse in Heidelberg.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.