96,95 €
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
48 °P sammeln
96,95 €
96,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
48 °P sammeln
Als Download kaufen
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
48 °P sammeln
Jetzt verschenken
96,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
48 °P sammeln
  • Format: ePub

Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science-medicine, the latest technology, and clinical economics-the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells,…mehr

Produktbeschreibung
Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science-medicine, the latest technology, and clinical economics-the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more.

Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine.

  • Arms readers with key information on tissue engineering, artificial organs and biomaterials, while using broadly accessible language
  • Provides broad introduction to, and examples of, various types of stem cells, core concepts of regenerative medicine, biomaterials, nanotechnology and nanomaterials, somatic cell transdyferentiation, and more
  • Edited and authored by researchers with expertise in regenerative medicine, (cancer) stem cells, biomaterials, genetics and nanomaterials

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Marek Los studied medicine at Jagiellonian Univ., Krakow, Poland. He obtained his doctoral degree from Univ. Heidelberg, in 1995, and habilitation (academic teaching license) in Molecular Medicine, from Univ. Muenster in 2002. He is currently the head of Department of Molecular Biology, Faculty of Pharmacy, Silesian University of Medicine, in Katowice, Poland. He is also assoc. editor at The European Journal of Pharmacology, holds 2 Visiting Professorships at other Polish universities, and a 'Senior Scientific Adviser' position at Linkocare AB, Linköping, Sweden. Linkocare's core business is the production of artificial corneas. Dr. Los (co-)authors about 150 scientific papers, some of them highly-cited, edited several books and volumes. He has been serving as member of a number of editorial boards of scientific journals, as well as on various grant review committees in the Europe and in Canada. Dr. Los pursues various research projects within area of oncology, targeted cancer the

rapies and Regenerative Medicine. His most important scientific achievements were the description of involvement of caspase family of proteases in CD95 (APO-1/Fas) mediated apoptosis, (Los et al., 1995; Nature 375: 81-83), and the discovery of the role of kinase Akt both in the regulation of cell survival and cell death of cancer cells (Maddika et al., 2008, J. Cell Sci.; Maddika et al., 2009, Mol. Cell. Biol.). His research interest encompasses cancer immunology, cell death execution pathways, as well as cancer stem cell biology, epigenetic reprogramming (production of iPS-cells), as well as transdifferentiation technologies.