Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Vast therapeutic applications of the following specific stem cells in disease and tissue injury are discussed: embryonic stem cells, induced pluripotent stem cells, human hair follicle stem cells, bone marrow-derived human mesenchymal stem cells, adipose-derived stem cells, periodontal/progenitor cells, cancer stem cells, and breast cancer stem cells. Because human embryonic stem cells possess the potential to produce unlimited quantities of any human cell type, considerable focus is placed on this type of stem cells in this volume. The role of cancer stem cells, specifically in breast cancer…mehr
Vast therapeutic applications of the following specific stem cells in disease and tissue injury are discussed: embryonic stem cells, induced pluripotent stem cells, human hair follicle stem cells, bone marrow-derived human mesenchymal stem cells, adipose-derived stem cells, periodontal/progenitor cells, cancer stem cells, and breast cancer stem cells. Because human embryonic stem cells possess the potential to produce unlimited quantities of any human cell type, considerable focus is placed on this type of stem cells in this volume. The role of cancer stem cells, specifically in breast cancer is explained. Transplantation of mesenchymal stem cells to aid the injured brain is included. Immune recovery after stem cells transplantation in severe combined immunodeficiency patients is described. The role of mesenchymal stem cells in enhancing the growth and metastasis of colon cancer is discussed. Clinical application of human follicle stem cells is presented. Treatment of malignant gliomas using genetically-modified neural stem cells as a marker is discussed. The impact of cancer stem cell hypothesis on designing new cancer therapies is explained. In the field of regenerative medicine, the use of stem cells in the repair of the central nervous system, tendon injury, and as a cardiac regenerative medicine is described. The role of DNA methylation in maintaining stemness induced pluripotent stem cells from human extraembryonic amnion cells is discussed. Insights on the understanding of molecular pathways involved in tumor biology are explained, which lead to the development of effective drugs. Information on pathways, such as hedgehog, facilitates targeted therapies in cancer.
I. Molecular genetic.-1 Neural stem/progenitor cell proliferation and differentiation: role of sonic hedgehog and wingless/int-1 proteins.-2 Sensitivity of hematopoietic and leukemic stem cells to hoxa gene levels.-3. Maintenance of neural stem cells in the brain: role of notch signaling.-4 Maintenance of hematopoiesis: role of early b cell factor 2 matthias kieslinger.-5 Differentiation of periodontal stem/progenitor cells: roles of tgf-β1.-6 Induced pluripotent stem cells from human extra-embryonic amnion cells: role of dna methylation in mainting stemness.-7 Smooth muscle cell differentiation from embryonic stem cells: role of hdac7 and pdgf-bb.-8 Adult neural stem cells; identity and regulation. II. Regenerative Medicine.-9 Tendon injury: role of differentiation of aduilt and embryonic derived stem cells.-10 The potential of stem cells and tissue engineered scaffolds for repair of the central nervous system.-11 Improving the efficacy of diabetes mellitus treatment by combining cell replacement therapy with immune correction.-12 Induced pluripotent stem cell production and characterization: an overview of somatic cell reprogramming.-13 Proliferation of bone marrow-derived human mesenchymal stem cells: role of enamel matrix proteins.-14 Pluripotent cell-derived glial precursor cells for the delivery of therapeutic proteins to the central nervous system.-15 Cellularized scaffolds: new clothes for cardiac regenerative medicine.-16 Microencapsulation procedures for the immunoisolation of wharton’s jelly mesenchymal stem cells: a review. III Therapy.-17 Human hair follical stem cells: markers, selection and perspective clinic application.-18 Adipose-derived stem cells: therapy through paracrine actions.-19 Mesenchymal stem cell-natural killer cell interactions.-20 Malignant gliomas: treatment using genetically-modified neural stem cells.-21 Thecancer stem cell hypothesis and its impact on the design of new cancer therapies.-22 Breast cancer stem cell: translating to the clinic.-23 Enhanced growth and metastasis of colon cancer: role of mesenchymal stem cells.-24 Proteomic characterization of mesenchymal stem cell-like populations derived from various tissue types. IV Transplantations.-25 Severe combined immunodefieciency patients: immune recovery after stem cell transplantation.-26 Transplanted mesenchymal stem cells aid the injured brain through trophic support mechanisms.Index.
I. Molecular genetic.-1 Neural stem/progenitor cell proliferation and differentiation: role of sonic hedgehog and wingless/int-1 proteins.-2 Sensitivity of hematopoietic and leukemic stem cells to hoxa gene levels.-3. Maintenance of neural stem cells in the brain: role of notch signaling.-4 Maintenance of hematopoiesis: role of early b cell factor 2 matthias kieslinger.-5 Differentiation of periodontal stem/progenitor cells: roles of tgf-beta1.-6 Induced pluripotent stem cells from human extra-embryonic amnion cells: role of dna methylation in mainting stemness.-7 Smooth muscle cell differentiation from embryonic stem cells: role of hdac7 and pdgf-bb.-8 Adult neural stem cells; identity and regulation. II. Regenerative Medicine.-9 Tendon injury: role of differentiation of aduilt and embryonic derived stem cells.-10 The potential of stem cells and tissue engineered scaffolds for repair of the central nervous system.-11 Improving the efficacy of diabetes mellitus treatment by combining cell replacement therapy with immune correction.-12 Induced pluripotent stem cell production and characterization: an overview of somatic cell reprogramming.-13 Proliferation of bone marrow-derived human mesenchymal stem cells: role of enamel matrix proteins.-14 Pluripotent cell-derived glial precursor cells for the delivery of therapeutic proteins to the central nervous system.-15 Cellularized scaffolds: new clothes for cardiac regenerative medicine.-16 Microencapsulation procedures for the immunoisolation of wharton's jelly mesenchymal stem cells: a review. III Therapy.-17 Human hair follical stem cells: markers, selection and perspective clinic application.-18 Adipose-derived stem cells: therapy through paracrine actions.-19 Mesenchymal stem cell-natural killer cell interactions.-20 Malignant gliomas: treatment using genetically-modified neural stem cells.-21 Thecancer stem cell hypothesis and its impact on the design of new cancer therapies.-22 Breast cancer stem cell: translating to the clinic.-23 Enhanced growth and metastasis of colon cancer: role of mesenchymal stem cells.-24 Proteomic characterization of mesenchymal stem cell-like populations derived from various tissue types. IV Transplantations.-25 Severe combined immunodefieciency patients: immune recovery after stem cell transplantation.-26 Transplanted mesenchymal stem cells aid the injured brain through trophic support mechanisms.Index.
I. Molecular genetic.-1 Neural stem/progenitor cell proliferation and differentiation: role of sonic hedgehog and wingless/int-1 proteins.-2 Sensitivity of hematopoietic and leukemic stem cells to hoxa gene levels.-3. Maintenance of neural stem cells in the brain: role of notch signaling.-4 Maintenance of hematopoiesis: role of early b cell factor 2 matthias kieslinger.-5 Differentiation of periodontal stem/progenitor cells: roles of tgf-β1.-6 Induced pluripotent stem cells from human extra-embryonic amnion cells: role of dna methylation in mainting stemness.-7 Smooth muscle cell differentiation from embryonic stem cells: role of hdac7 and pdgf-bb.-8 Adult neural stem cells; identity and regulation. II. Regenerative Medicine.-9 Tendon injury: role of differentiation of aduilt and embryonic derived stem cells.-10 The potential of stem cells and tissue engineered scaffolds for repair of the central nervous system.-11 Improving the efficacy of diabetes mellitus treatment by combining cell replacement therapy with immune correction.-12 Induced pluripotent stem cell production and characterization: an overview of somatic cell reprogramming.-13 Proliferation of bone marrow-derived human mesenchymal stem cells: role of enamel matrix proteins.-14 Pluripotent cell-derived glial precursor cells for the delivery of therapeutic proteins to the central nervous system.-15 Cellularized scaffolds: new clothes for cardiac regenerative medicine.-16 Microencapsulation procedures for the immunoisolation of wharton’s jelly mesenchymal stem cells: a review. III Therapy.-17 Human hair follical stem cells: markers, selection and perspective clinic application.-18 Adipose-derived stem cells: therapy through paracrine actions.-19 Mesenchymal stem cell-natural killer cell interactions.-20 Malignant gliomas: treatment using genetically-modified neural stem cells.-21 Thecancer stem cell hypothesis and its impact on the design of new cancer therapies.-22 Breast cancer stem cell: translating to the clinic.-23 Enhanced growth and metastasis of colon cancer: role of mesenchymal stem cells.-24 Proteomic characterization of mesenchymal stem cell-like populations derived from various tissue types. IV Transplantations.-25 Severe combined immunodefieciency patients: immune recovery after stem cell transplantation.-26 Transplanted mesenchymal stem cells aid the injured brain through trophic support mechanisms.Index.
I. Molecular genetic.-1 Neural stem/progenitor cell proliferation and differentiation: role of sonic hedgehog and wingless/int-1 proteins.-2 Sensitivity of hematopoietic and leukemic stem cells to hoxa gene levels.-3. Maintenance of neural stem cells in the brain: role of notch signaling.-4 Maintenance of hematopoiesis: role of early b cell factor 2 matthias kieslinger.-5 Differentiation of periodontal stem/progenitor cells: roles of tgf-beta1.-6 Induced pluripotent stem cells from human extra-embryonic amnion cells: role of dna methylation in mainting stemness.-7 Smooth muscle cell differentiation from embryonic stem cells: role of hdac7 and pdgf-bb.-8 Adult neural stem cells; identity and regulation. II. Regenerative Medicine.-9 Tendon injury: role of differentiation of aduilt and embryonic derived stem cells.-10 The potential of stem cells and tissue engineered scaffolds for repair of the central nervous system.-11 Improving the efficacy of diabetes mellitus treatment by combining cell replacement therapy with immune correction.-12 Induced pluripotent stem cell production and characterization: an overview of somatic cell reprogramming.-13 Proliferation of bone marrow-derived human mesenchymal stem cells: role of enamel matrix proteins.-14 Pluripotent cell-derived glial precursor cells for the delivery of therapeutic proteins to the central nervous system.-15 Cellularized scaffolds: new clothes for cardiac regenerative medicine.-16 Microencapsulation procedures for the immunoisolation of wharton's jelly mesenchymal stem cells: a review. III Therapy.-17 Human hair follical stem cells: markers, selection and perspective clinic application.-18 Adipose-derived stem cells: therapy through paracrine actions.-19 Mesenchymal stem cell-natural killer cell interactions.-20 Malignant gliomas: treatment using genetically-modified neural stem cells.-21 Thecancer stem cell hypothesis and its impact on the design of new cancer therapies.-22 Breast cancer stem cell: translating to the clinic.-23 Enhanced growth and metastasis of colon cancer: role of mesenchymal stem cells.-24 Proteomic characterization of mesenchymal stem cell-like populations derived from various tissue types. IV Transplantations.-25 Severe combined immunodefieciency patients: immune recovery after stem cell transplantation.-26 Transplanted mesenchymal stem cells aid the injured brain through trophic support mechanisms.Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu