43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
Jetzt verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
  • Format: ePub

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately &quote;fool&quote; them with data that wouldnt trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNsthe algorithms intrinsic to much of AIare used daily to process image, audio, and video data.Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If youre a data scientist developing DNN algorithms, a security architect interested in how…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 40.75MB
  • FamilySharing(5)
Produktbeschreibung
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "e;fool"e; them with data that wouldnt trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNsthe algorithms intrinsic to much of AIare used daily to process image, audio, and video data.Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If youre a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you.Delve into DNNs and discover how they could be tricked by adversarial inputInvestigate methods used to generate adversarial input capable of fooling DNNsExplore real-world scenarios and model the adversarial threatEvaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial dataExamine some ways in which AI might become better at mimicking human perception in years to come

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Katy Warr works at Roke Manor Research in the UK creating solutions for complex real-world problems. She specializes in AI and data analytics and leads the company's technical strategy in these areas. Previously she worked at IBM UK Laboratories, architecting and developing software for a variety of distributed enterprise products with an emphasis on transactional integrity and security. Katy gained her degree in AI and Computer Science from the University of Edinburgh at a time when there was insufficient compute power and data available for deep learning to be much more than a theoretical pursuit. Fast forward a few years and she considers herself fortunate to witness this exciting field becoming mainstream.