Sub-Riemannian Geometry (eBook, PDF)
Redaktion: Bellaiche, Andre; Risler, Jean-Jaques
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Sub-Riemannian Geometry (eBook, PDF)
Redaktion: Bellaiche, Andre; Risler, Jean-Jaques
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 34.63MB
Andere Kunden interessierten sich auch für
- Vladimir RovenskiFoliations on Riemannian Manifolds and Submanifolds (eBook, PDF)73,95 €
- Eduardo García-RíoSemi-Riemannian Maps and Their Applications (eBook, PDF)73,95 €
- -29%11Luca CapognaAn Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (eBook, PDF)105,95 €
- Serge LangDifferential and Riemannian Manifolds (eBook, PDF)48,95 €
- Gang TianCanonical Metrics in Kähler Geometry (eBook, PDF)61,95 €
- Wilderich TuschmannModuli Spaces of Riemannian Metrics (eBook, PDF)20,95 €
- Thierry AubinSome Nonlinear Problems in Riemannian Geometry (eBook, PDF)97,95 €
-
-
-
Produktdetails
- Verlag: Springer Basel
- Seitenzahl: 398
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034892100
- Artikelnr.: 53096721
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
The tangent space in sub-Riemannian geometry.-
1. Sub-Riemannian manifolds.-
2. Accessibility.-
3. Two examples.-
4. Privileged coordinates.-
5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.-
6. Gromov's notion of tangent space.-
7. Distance estimates and the metric tangent space.-
8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- 0. Basic definitions, examples and problems.-
1. Horizontal curves and small C-C balls.-
2. Hypersurfaces in C-C spaces.-
3. Carnot-Carathéodory geometry of contact manifolds.-
4. Pfaffian geometry in the internal light.-
5. Anisotropic connections.- References.- Survey of singular geodesics.-
1. Introduction.-
2. The example and its properties.-
3. Some open questions.-
4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.-
1. Introduction.-
2. Sub-Riemannian manifolds and abnormal extremals.-
3. Abnormal extremals in dimension 4.-
4. Optimality.-
5. An optimality lemma.-
6. End of the proof.-
7. Strict abnormality.-
8. Conclusion.- References.- Stabilization of controllable systems.-
0. Introduction.-
1. Local controllability.-
2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.-
3. Necessary conditions for local stabilizability by means of stationary feedback laws.-
4. Stabilization by means of time-varying feedback laws.-
5. Return method and controllability.- References.
1. Sub-Riemannian manifolds.-
2. Accessibility.-
3. Two examples.-
4. Privileged coordinates.-
5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.-
6. Gromov's notion of tangent space.-
7. Distance estimates and the metric tangent space.-
8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- 0. Basic definitions, examples and problems.-
1. Horizontal curves and small C-C balls.-
2. Hypersurfaces in C-C spaces.-
3. Carnot-Carathéodory geometry of contact manifolds.-
4. Pfaffian geometry in the internal light.-
5. Anisotropic connections.- References.- Survey of singular geodesics.-
1. Introduction.-
2. The example and its properties.-
3. Some open questions.-
4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.-
1. Introduction.-
2. Sub-Riemannian manifolds and abnormal extremals.-
3. Abnormal extremals in dimension 4.-
4. Optimality.-
5. An optimality lemma.-
6. End of the proof.-
7. Strict abnormality.-
8. Conclusion.- References.- Stabilization of controllable systems.-
0. Introduction.-
1. Local controllability.-
2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.-
3. Necessary conditions for local stabilizability by means of stationary feedback laws.-
4. Stabilization by means of time-varying feedback laws.-
5. Return method and controllability.- References.
The tangent space in sub-Riemannian geometry.-
1. Sub-Riemannian manifolds.-
2. Accessibility.-
3. Two examples.-
4. Privileged coordinates.-
5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.-
6. Gromov's notion of tangent space.-
7. Distance estimates and the metric tangent space.-
8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- 0. Basic definitions, examples and problems.-
1. Horizontal curves and small C-C balls.-
2. Hypersurfaces in C-C spaces.-
3. Carnot-Carathéodory geometry of contact manifolds.-
4. Pfaffian geometry in the internal light.-
5. Anisotropic connections.- References.- Survey of singular geodesics.-
1. Introduction.-
2. The example and its properties.-
3. Some open questions.-
4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.-
1. Introduction.-
2. Sub-Riemannian manifolds and abnormal extremals.-
3. Abnormal extremals in dimension 4.-
4. Optimality.-
5. An optimality lemma.-
6. End of the proof.-
7. Strict abnormality.-
8. Conclusion.- References.- Stabilization of controllable systems.-
0. Introduction.-
1. Local controllability.-
2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.-
3. Necessary conditions for local stabilizability by means of stationary feedback laws.-
4. Stabilization by means of time-varying feedback laws.-
5. Return method and controllability.- References.
1. Sub-Riemannian manifolds.-
2. Accessibility.-
3. Two examples.-
4. Privileged coordinates.-
5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.-
6. Gromov's notion of tangent space.-
7. Distance estimates and the metric tangent space.-
8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- 0. Basic definitions, examples and problems.-
1. Horizontal curves and small C-C balls.-
2. Hypersurfaces in C-C spaces.-
3. Carnot-Carathéodory geometry of contact manifolds.-
4. Pfaffian geometry in the internal light.-
5. Anisotropic connections.- References.- Survey of singular geodesics.-
1. Introduction.-
2. The example and its properties.-
3. Some open questions.-
4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.-
1. Introduction.-
2. Sub-Riemannian manifolds and abnormal extremals.-
3. Abnormal extremals in dimension 4.-
4. Optimality.-
5. An optimality lemma.-
6. End of the proof.-
7. Strict abnormality.-
8. Conclusion.- References.- Stabilization of controllable systems.-
0. Introduction.-
1. Local controllability.-
2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.-
3. Necessary conditions for local stabilizability by means of stationary feedback laws.-
4. Stabilization by means of time-varying feedback laws.-
5. Return method and controllability.- References.