Superionic Solids and Solid Electrolytes: Recent Trends describes the fundamental aspects, unique properties, and potential applications of superionic solids and solid electrolytes. These materials significantly contribute to the development of the solid state ionics technology.
This book is divided into 17 chapters, and begins with an overview of various materials, such as glasses, heterogeneous or dispersed phase conductors, proton conductors, Nasicon, and fluorites. These topics are followed by a discussion on the problems related with entropy effects, subsurface space charge, and defect formation parameters. Significant chapters deal with the phenomenological, fractal, molecular dynamics, fluctuations, and correlations in superionic solid and solid electrolyte materials. A chapter tackles the solid state battery applications of solid electrolytes. This text ends with a chapter on the prediction of the potentials of activity in superionics.
This book will be of value to graduate students and researchers who are interested in the solid state ionics technology.
This book is divided into 17 chapters, and begins with an overview of various materials, such as glasses, heterogeneous or dispersed phase conductors, proton conductors, Nasicon, and fluorites. These topics are followed by a discussion on the problems related with entropy effects, subsurface space charge, and defect formation parameters. Significant chapters deal with the phenomenological, fractal, molecular dynamics, fluctuations, and correlations in superionic solid and solid electrolyte materials. A chapter tackles the solid state battery applications of solid electrolytes. This text ends with a chapter on the prediction of the potentials of activity in superionics.
This book will be of value to graduate students and researchers who are interested in the solid state ionics technology.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.